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Active investors and asset managers — such as hedge funds, mutual funds, and propri-

etary traders — try to predict security returns and trade to profit from their predictions.

Such dynamic trading often entails significant turnover and trading costs. Hence, any active

investor must constantly weigh the expected excess return to trading against the risk and

costs of trading. An investor often uses different return predictors, e.g., value and momentum

predictors, and these have different prediction strengths and mean-reversion speeds, or, said

differently, different “alphas” and “alpha decays.” The alpha decay is important because it

determines how long the investor can enjoy high expected returns and, therefore, affects the

trade-off between returns and transactions costs. For instance, while a momentum signal

may predict that the IBM stock return will be high over the next month, a value signal

might predict that Cisco will perform well over the next year. The optimal trading strategy

must consider these dynamics.

This paper addresses how the optimal trading strategy depends on securities’ current

expected returns, the evolution of expected returns in the future, their risks and correlations,

and their trading costs. We present a closed-form solution for the optimal portfolio re-

balancing rule taking these considerations into account.

The optimal trading strategy is intuitive: The best new portfolio is a combination of 1)

the current portfolio (to reduce turnover), 2) the optimal portfolio in the absence of trading

costs (to get part of the best current risk-return trade-off), and 3) the expected optimal

portfolio in the future (a dynamic effect). Said differently, the best portfolio is a weighted

average of the current portfolio and a “target portfolio” that combines portfolios 2) and 3).

Consistent with this decomposition, an investor facing transaction costs trades more

aggressively on persistent signals than on fast mean-reverting signals: the benefits from the

former accrue over longer periods, and are therefore larger. As is natural, transaction costs

inhibit trading, both currently and in the future. Thus, target portfolios are conservative

given the signals, and trading towards the target portfolio is slower when transaction costs

are large.

The key role played by each return predictor’s mean reversion is an important implication
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of our model. It arises because transaction costs imply that the investor cannot easily change

his portfolio and, therefore, must consider his optimal portfolio both now and in the future.

In contrast, absent transaction costs, the investor can re-optimize at no cost and needs to

consider only the current investment opportunities (and possible hedging demands) without

regard to alpha decay.

We first solve the model in discrete time. One may wonder, however, whether the length

of the discrete-time interval between trading opportunities is important for the model, how

different models with different interval lengths fit together, and what happens as this length

approaches zero, that is, with continuous trading. To answer these questions, we present

a continuous-time version of the model and show how the discrete-time solutions approach

the continuous-time solution. An additional benefit of the continuous-time model is that the

solution is even simpler, making applications of the model even easier.

As one such application, we embed the continuous-time model in an equilibrium setting.

Rational investors facing transaction costs trade with several groups of noise traders who

provide a time-varying excess supply or demand of assets. We show that, in order for the

market to clear, the investors must be offered return premia depending on the properties of

the noise-traders’ positions. In particular, the noise trader positions that mean revert more

quickly generate larger alphas in equilibrium, as the rational investors must be compensated

for incurring more transaction costs per time unit. Long-lived supply fluctuations, on the

other hand, give rise to smaller and more persistent alphas.

Finally, we illustrate our results empirically in the context of commodity futures markets.

We use returns over the past 5 days, 12 months, and 5 years to predict returns. The 5-day

signal is quickly mean reverting (fast alpha decay), the 12-month signal mean reverts more

slowly, whereas the 5-year signal is the most persistent. We calculate the optimal dynamic

trading strategy taking transaction costs into account and compare its performance to the

optimal portfolio ignoring transaction costs and to a class of strategies that perform static

(one-period) transaction-cost optimization. Our optimal portfolio performs the best net of

transaction costs among all the strategies that we consider. Its net Sharpe ratio is about
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20% better than that of the best strategy among all the static strategies. Our strategy’s

superior performance is achieved by trading at an optimal speed and by trading towards a

target portfolio that is optimally tilted towards the more persistent return predictors.

We also study the impulse-response of the security positions following a shock to return

predictors. While the no-transaction-cost position immediately jumps up and mean reverts

with the speed of the alpha decay, the optimal position increases more slowly to minimize

trading costs and, depending on the alpha decay speed, may eventually become larger than

the no-transaction-cost position as the optimal position is sold more slowly.

Our paper is related to several large strands of literature. First, a large literature stud-

ies portfolio selection with return predictability in the absence of trading costs (see, e.g.,

Campbell and Viceira (2002) and references therein). A second strand of literature derives

the optimal trade execution, treating what to trade as given exogenously (see, e.g., Perold

(1988), Bertsimas and Lo (1998), Almgren and Chriss (2000), Obizhaeva and Wang (2006),

and Engle and Ferstenberg (2007)). A third strand of literature, starting with Constantinides

(1986), considers the optimal portfolio selection with trading costs, but without return pre-

dictability.1 Constantinides (1986) considers a single risky asset in a partial equilibrium and

studies trading-cost implications for the equity premium. Equilibrium models with trading

costs include Amihud and Mendelson (1986), Vayanos (1998), Vayanos and Vila (1999), Lo,

Mamaysky, and Wang (2004), Gârleanu (2009), and Acharya and Pedersen (2005), who also

consider time-varying trading costs. Liu (2004) determines the optimal trading strategy for

an investor with constant absolute risk aversion (CARA) and many independent securities

with both fixed and proportional costs (without predictability). The assumptions of CARA

and independence across securities imply that the optimal position for each security is in-

dependent of the positions in the other securities. In a fourth (and most related) strand of

literature, using calibrated numerical solutions, trading costs are combined with incomplete

1Davis and Norman (1990) provide a more formal analysis of Constantinides’ model. Also, Gârleanu
(2009) and Lagos and Rocheteau (2006) show how search frictions and payoff mean-reversion impact how
close one trades to the static portfolio. Our continuous-time model with with bounded-variation trading
shares features with Longstaff (2001) and, in the context of predatory trading, by Brunnermeier and Pedersen
(2005) and Carlin, Lobo, and Viswanathan (2008). See also Oehmke (2009).
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markets by Heaton and Lucas (1996), and with predictability and time-varying investment

opportunity by Balduzzi and Lynch (1999), Lynch and Balduzzi (2000), Jang, Koo, Liu, and

Loewenstein (2007), and Lynch and Tan (2008). Grinold (2006) derives the optimal steady-

state position with quadratic trading costs and a single predictor of returns per security.

Like Heaton and Lucas (1996) and Grinold (2006), we also rely on quadratic trading costs.

We contribute to the literature in several ways. We provide a closed-form solution for a

model with multiple correlated securities and multiple return predictors with different mean-

reversion speeds, uncovering the role of alpha decay; derive new equilibrium implications;

and demonstrate the model’s empirical importance using real data.

We end our discussion of the related literature by noting that quadratic programming

techniques are also used in macroeconomics and other fields, and, usually, the solution comes

down to algebraic matrix Riccati equations (see, e.g., Ljungqvist and Sargent (2004) and

references therein). We solve our model explicitly, including the Riccati equations, in both

discrete and continuous time.

The paper is organized as follows. Section 1 lays out a general discrete-time model,

provides a closed-form solution, and presents various related results and examples. Sec-

tion 2 solves the analogous continuous-time model and shows how it is approached by the

discrete-time model as the time interval between trades becomes small. Section 3 studies

the model’s equilibrium implications. Section 4 applies our framework to a trading strategy

for commodity futures, and Section 5 concludes.

1 Discrete-Time Model

We first present the model, then solve it and provide additional results and examples.
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1.1 General Discrete-Time Framework

We consider an economy with S securities traded at each time t = 1, 2, 3, .... The securities’

price changes between times t and t+ 1, pt+1 − pt, are collected in a vector rt+1 given by

rt+1 = µt + αt + ut+1, (1)

where µt is the “fair return,” e.g., from the CAPM, ut+1 is an unpredictable zero-mean noise

term with variance vart(ut+1) = Σ, and αt (alpha) is the predictable excess return, i.e.,

known to the investor already at time t, and given by

αt = Bft (2)

∆ft+1 = −Φft + εt+1. (3)

Here, f is a K×1 vector of factors that predict returns, B is a S×K matrix of factor loadings,

Φ is a K×K positive-definite matrix of mean-reversion coefficients for the factors, and εt+1 is

the shock affecting the predictors with variance vart(εt+1) = Ω. Naturally, ∆ft+1 = ft+1− ft
is the change in the factors.

The interpretation of these assumptions is straightforward: the investor analyzes the se-

curities and his analysis results in forecasts of excess returns. The most direct interpretation

is that the investor regresses the return on security s on factors f which could be past returns

over various horizons, valuation ratios, and other return-predicting variables:

rst+1 = µst +
∑
k

βskfkt + ust+1, (4)

and thus estimates each variable’s ability to predict returns as given by βsk (collected in the

matrix B). Alternatively, one can think of the factors as an analyst’s overall assessment of

a security (possibly based on a range of qualitative information) and B as the strength of

these assessments in predicting returns.

We note that each factor fk can in principle predict each security. However, the model
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can easily be simplified to the special case in which there are different factors for different

securities, as we discuss in Example 2 below. We further note that Equation (3) means that

the factors and alphas mean-revert to zero. This is a natural assumption since an excess

return that is always present should be viewed as compensation for risk, not reward for

security analysis. Hence, such average returns are part of the fair return µt. That said, an

intercept term can be accommodated, e.g., as a constant factor f 1
t = 1.

Trading is costly in this economy and the transaction cost (TC) associated with trading

∆xt = xt − xt−1 shares is given by

TC(∆xt) =
1

2
∆x>t Λ∆xt, (5)

where Λ is a symmetric positive-definite matrix measuring the level of trading costs.2 Trading

costs of this form can be thought of as follows. Trading ∆xt shares moves the (average) price

by 1
2
Λ∆xt, and this results in a total trading cost of ∆xt times the price move, which gives

TC. Hence, Λ (actually 1/2 Λ for convenience) is a multi-dimensional version of Kyle’s

lambda.

The investor’s objective is to choose the dynamic trading strategy (x0, x1, ...) to maximize

the present value of all future expected alphas, penalized for risks and trading costs:

max
x0,x1,...

E0

[∑
t

(1− ρ)t
(
x>t αt −

γ

2
x>t Σxt −

1

2
∆x>t Λ∆xt

)]
, (6)

where ρ ∈ (0, 1) is a discount factor, and γ is the risk aversion coefficient.

There are several natural interpretations of this objective. First, we can envision an

investor who is compensated based on his performance relative to a benchmark b. Under

this interpretation, xt is the deviation of the total portfolio, which we can denote by x∗,

from the benchmark portfolio, that is, xt = x∗t − b. Hence, x>t α measures the excess return

over the benchmark, and x>t Σxt measures the variance of the tracking error relative to the

2The assumption that Λ is symmetric is without loss of generality. To see this, suppose that TC(∆xt) =
1
2∆x>t Λ̄∆xt, where Λ̄ is not symmetric. Then, letting Λ be the symmetric part of Λ̄, i.e., Λ = (Λ̄ + Λ̄>)/2,
Λ generates the same trading costs as Λ̄.
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benchmark.

Another interpretation centers on a hedge fund manager who cares about his total net

return (so xt is the total portfolio), but is committed to achieving “alpha” (i.e., as opposed

to making time-invariant bets based on constant risk premia).

A final interpretation concerns a “standard” investor who considers the return of his total

portfolio (i.e., not just the alpha above the fair return µ or over a benchmark). Under this

interpretation, xt is the total portfolio, and we eliminate µ from (4), letting instead the first

factor be constant, f 1
t = 1, and βs1 = µs. Thus, βs1f 1

t = µs captures the average security

returns. It follows that α incorporates the entire return in the objective function and, in fact,

this objective can be justified in a standard set-up with exponential utility for consumption

and normally-distributed price changes, under certain conditions.

These interpretations are linked naturally. To see this, we can take the final interpretation

and find an optimal “total portfolio” x∗t (i.e., the solution with f 1
t = 1, βs1 = µs, and no µ

term in (4), and compare it to the alpha-maximizing portfolio xt from the first interpretation

(i.e., the solution of (6) as is). It can be shown that, if x∗0 = (γΣ)−1 µ + x0, then x∗t =

(γΣ)−1 µ+ xt for all t, that is, the total-return-maximizing portfolio x∗t is the “benchmark”

plus the optimal deviation xt from this benchmark, where the benchmark is given as the

constant Markowitz portfolio relative to the average returns µ.

1.2 Solution and Results

We solve the model using dynamic programming. We start by introducing a value function

V (xt−1, ft) measuring the value of entering period t with a portfolio of xt−1 securities and

observing return-predicting factors ft. The value function solves the Bellman equation:

V (xt−1, ft) = max
xt

{
x>t αt −

γ

2
x>t Σxt −

1

2
∆x>t Λ∆xt + (1− ρ)Et[V (xt, ft+1)]

}
. (7)

We guess, and later verify, that the solution has a quadratic form:

V (xt, ft+1) = −1

2
x>t Axxxt + x>t Axfft+1 +

1

2
f>t+1Affft+1 + a0, (8)
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where we need to derive the scalar a0, the symmetric matrices Axx and Aff , and the matrix

Axf .

The model in its most general form can be solved explicitly as we state in the following

proposition. The expressions for the coefficient matrices (Axx, Axf ) are somewhat long, so

we leave them in the Appendix, but they become simple in the special cases discussed below,

and, in continuous time, they are relatively simple even in the most general case.

Proposition 1 The optimal dynamic portfolio xt is a “matrix-weighted average” of the cur-

rent position and a target portfolio:

xt = (I − Λ−1Axx)xt−1 + Λ−1Axx target t, (9)

with

target t = A−1
xxAxfft. (10)

The matrix Axx is positive definite; Axx and Axf are stated explicitly in (A.13) and (A.19).

An alternative characterization of the optimal portfolio is a weighted average of the cur-

rent position, xt−1, the optimal position in the absence of transaction costs, (γΣ)−1Bft, and

the expected target next period, Et(target t+1) = A−1
xxAxf (I − Φ)ft:

xt = [Λ + γΣ + (1− ρ)Axx]
−1

×
[
Λxt−1 + γΣ

(
(γΣ)−1Bft

)
+ (1− ρ)Axx

(
A−1
xxAxf (I − Φ)ft

)]
. (11)

The proposition provides expressions for the optimal portfolio that are natural and relatively

simple. The optimal trade ∆xt follows directly from the proposition as

∆xt = Λ−1Axx (target t − xt) . (12)

The optimal trade is proportional to the difference between the current portfolio and the

target portfolio, and the trading speed decreases in the trading cost Λ.

We discuss the intuition behind the result further under the additional assumption that
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Λ = λΣ for some number 0 < λ ∈ R, which simplifies the solution further. This means

that the trading-cost matrix is proportional to the return variance-covariance matrix. This

trading cost is natural and, in fact, implied by the model of dealers in Gârleanu, Pedersen,

and Poteshman (2008). To understand this, suppose that a dealer takes the other side of

the trade ∆xt for a single period and can “lay it off” thereafter, and that alpha is zero

conditional on the dealer’s information. Then the dealer’s risk is ∆x>t Σ∆xt and the trading

costs is the dealer’s compensation for risk, depending on the dealer’s risk aversion λ. Under

this assumption, we derive the following simple and intuitive optimal trading strategy.

Proposition 2 When the trading cost is proportional to the amount of risk, Λ = λΣ, then

the optimal new portfolio xt is a weighted average of the current position xt−1 and a moving

“target portfolio”

xt =
(

1− a

λ

)
xt−1 +

a

λ
target t (13)

where a
λ
< 1 and

target t = (γΣ)−1B

(
I +

a(1− ρ)

γ
Φ

)−1

ft (14)

a =
−(γ + λρ) +

√
(γ + λρ)2 + 4γλ(1− ρ)

2(1− ρ)
(15)

The target is the optimal position in the absence of trading costs if the return-predictability

coefficients were B
(
I + a(1−ρ)

γ
Φ
)−1

instead of B.

Alternatively, xt is a weighted average of the current position, xt−1, the optimal position

in the absence of trading costs, statict = (γΣ)−1Bft, and the expected target in the future,

Et(target t+1) = (γΣ)−1B
(
I + a(1−ρ)

γ
Φ
)−1

(I − Φ)ft:

xt =
λ

λ+ γ + (1− ρ)a
xt−1 +

γ

λ+ γ + (1− ρ)a
statict+

(1− ρ)a

λ+ γ + (1− ρ)a
Et(target t+1). (16)

This result provides a simple and appealing trading rule. Equation (13) states that the

optimal portfolio is between the existing one and an optimal target, where the weight on the
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target a/λ decreases in trading costs λ because higher trading costs imply that one must

trade more slowly. The weight on the target increases in γ because a higher risk aversion

means that it is more important not to let one’s position stray too far from its optimal level.

The alternative characterization (16) provides a similar intuition and comparative statics,

and separates the target into the current Markowitz static optimal position without trans-

action costs and the expected future target. The weight on the future target is small if the

trading cost λ is small (because this makes a small) or if the agent is very impatient such that

ρ is close to 1. We note that while the weights on the current position xt−1 appear different

in (13) and (16), they are, naturally, the same. The optimal trading policy is illustrated in

Figure 1.

The optimal trading is simpler yet under the additional (and rather standard) assumption

that the mean reversion of each factor fk only depends on its own level (not the level of the

other factors), that is, Φ = diag(φ1, ..., φK) is diagonal, so that Equation (3) simplifies to

scalars:

∆fkt+1 = −φkfkt + εkt+1. (17)

Under these assumptions we have:

Proposition 3 If Λ = λΣ and Φ = diag(φ1, ..., φK), then the optimal portfolio is the

weighted average (13) of the current portfolio xt−1 and a target portfolio, which is the optimal

portfolio without trading costs with each factor fkt scaled depending on its alpha decay φk:

target t = (γΣ)−1B

(
f 1
t

1 + φ1(1− ρ)a/γ
, . . . ,

fKt
1 + φK(1− ρ)a/γ

)>
(18)

We see that the target portfolio is very similar to the optimal portfolio without transaction

costs (γΣ)−1Bft. The transaction costs imply first that one optimally only trades part of the

way towards the target, and, second, that the target down-weights each return-predicting

factor more the higher is its alpha decay φk. Down-weighting factors reduces the size of the

position, and, more importantly, changes the relative importance of the different factors as
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illustrated in Figure 2. Naturally, giving more weight to the more persistent factors means

that the investor trades towards a portfolio that not only has a high alpha now, but also is

expected to have a high alpha for a longer time in the future.

We next provide a few examples.

Example 1: Timing a single security

An interesting and simple case is when there is only one security. This occurs when an

investor is timing his long or short view of a particular security or market. In this case,

the assumption that Λ = λΣ from Propositions 2–3 is without loss of generality since all

parameters are just scalars. In the scalar case, we use the notation Σ = σ2 and B =

(β1, ..., βK). Assuming that Φ is diagonal, we can apply Proposition 3 directly to get the

optimal timing trade:

xt =
(

1− a

λ

)
xt−1 +

a

λ

1

γσ2

K∑
i=1

1

1 + φi(1− ρ)a/γ
βif it . (19)

Example 2: Relative-value trades based on security characteristics

It is natural to assume that the agent uses certain characteristics of each security to predict

its returns. Hence, each security has its own return-predicting factors (whereas, in the general

model above, all the factors could influence all the securities). For instance, one can imagine

that each security is associated with a value characteristic (e.g., its own book-to-market)

and a momentum characteristic (its own past return). In this case, it is natural to let the

alpha for security s be given by

αst =
∑
i

βif i,st , (20)

where f i,st is characteristic i for security s (e.g., IBM’s book-to-market) and βi be the pre-

dictive ability of characteristic i (i.e., how book-to-market translates into future expected

return, for any security), which is the same for all securities s. Further, we assume that
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characteristic i has the same mean-reversion speed for each security, that is, for all s,

∆f i,st+1 = −φif i,st + εi,st+1. (21)

We collect the current values of characteristic i for all securities in a vector f it =
(
f i,1t , ..., f i,St

)>
,

e.g., the book-to-market of security 1, book-to-market of security 2, etc.

This setup based on security characteristics is a special case of our general model. To

map it into the general model, we stack all the various characteristic vectors on top of each

other into f :

ft =


f 1
t

...

f It

 . (22)

Further, we let IS×S be the S-by-S identity matrix and can express B using the kronecker

product:

B = β> ⊗ IS×S =


β1 0 0 βI 0 0

0
. . . 0 · · · 0

. . . 0

0 0 β1 0 0 βI

 . (23)

Thus, αt = Bft. Also, let Φ = diag(φ ⊗ 1S×1) = diag(φ1, ..., φ1, ..., φI , ..., φI). With these

definitions, we apply Proposition 3 to get the optimal characteristic-based relative-value

trade as

xt =
(

1− a

λ

)
xt−1 +

a

λ
(γΣ)−1

I∑
i=1

1

1 + φi(1− ρ)a/γ
βif it . (24)

Example 3: Static model

When the investor completely discounts the future, i.e., ρ = 1, he only cares about the
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current period and the problem is static. The investor simply solves

max
xt

x>t αt −
γ

2
x>t Σxt −

λ

2
∆x>t Σ∆xt (25)

with a solution that specializes Proposition 2:

xt =
λ

γ + λ
xt−1 +

γ

γ + λ
(γΣ)−1 αt. (26)

To recover the optimal dynamic weight on the current position xt−1 from (16), one must

lower the trading cost λ to 1
1+(1−ρ)a/γ

λ to account for the future benefits of the position.

Alternatively, one can increase risk aversion, or do some combination.

Interestingly, however, with multiple return-predicting factors, no choice of risk aversion

γ and trading cost λ recovers the dynamic solution. This is because the static solution treats

all factors the same, while the dynamic solution gives more weight to factors with slower

alpha decay. We show empirically in Section 4 that even the best choice of γ and λ in a

static model may perform significantly worse than our dynamic solution.

To recover the dynamic solution in a static setting, one must change not just γ and λ,

but additionally the alphas αt = Bft by changing B as described in Propositions 2–3.

Example 4: Today’s first signal is tomorrow’s second signal

Suppose that the investor is timing a single market using each of the several past daily

returns to predict the next return. In other words, the first signal f 1
t is the daily return

for yesterday, the second signal f 2
t is the return the day before yesterday, and so on, so

that the last signal used yesterday is ignored today. In this case, the trader already knows

today what some of her signals will look like in the future. Today’s yesterday is tomorrow’s

day-before-yesterday:

f 1
t+1 = ε1

t+1

fkt+1 = fk−1
t for k > 1
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The matrix Φ is therefore not diagonal, but has the form

I − Φ =


0 0

1 0
. . . . . .

0 1 0

 .

Suppose for simplicity that all signals are equally important for predicting returns B =

(β, ..., β) and use the notation Σ = σ2. Then we can use Proposition 2 to get the optimal

trading strategy

xt =
(

1− a

λ

)
xt−1 +

1

σ2
B((γ + λ+ (1− ρ)a)I − λ(1− ρ) (I − Φ))−1ft

=
(

1− a

λ

)
xt−1 +

β

σ2 (γ + λ+ (1− ρ)a)

K∑
k=1

(
1− zK+1−k) fkt

=
(

1− a

λ

)
xt−1 +

β(λ− a)

λ2σ2

K∑
k=1

(
1− zK+1−k) fkt

where z = λ(1−ρ)
γ+λ+(1−ρ)a

< 1. Hence, the optimal portfolio gives the largest weight to the

first signal (yesterday’s return), the second largest to the second signal, and so on. This is

intuitive, since the first signal will continue to be important the longest, the second signal

the second longest, and so on.

2 Continuous-Time Model

We next present the continuous-time version of our model. The continuous-time model

is convenient since it has an even simpler solution and, therefore, it constitutes a useful

workhorse model for applications — e.g., our equilibrium analysis. We show below that the

continuous-time model obtains naturally as the limit of discrete-time models.

15



The securities have prices p with dynamics

dpt = (µt + αt) dt+ dut (27)

where, as before, µt is the “fair return,” the random “noise” u is a martingale (e.g., a

Brownian motion) with drift zero and instantaneous variance covariance matrix vart(dut) =

Σdt, and the predictable return α is given by

αt = Bft (28)

dft = −Φftdt+ dεt. (29)

The vector f contains the factors that predict returns, B contains the factor loadings, Φ is the

matrix of mean-reversion coefficients, and the noise term ε is a martingale (e.g., a Brownian

motion) with drift zero and instantaneous variance-covariance matrix vart(dεt) = Ωdt.

The agent chooses his trading intensity τt ∈ RS, which determines the rate of change3 of

his position xt:

dxt = τtdt. (30)

The cost per time unit of trading τt shares per time unit is

TC(τt) =
1

2
τ>t Λτt (31)

and the investor chooses his optimal trading strategy to maximize the present value of the

future stream of alphas, penalized for risk and trading costs:

max
(τs)s≥t

Et

∫ ∞
t

e−ρ(s−t)
(
x>s αs −

γ

2
x>s Σxs −

1

2
τ>s Λτs

)
ds. (32)

3We only consider smooth portfolio policies because discreet jumps in positions or quadratic variation
would be associated with infinite trading costs in our setting. E.g., if the agent trades n shares over a time
period of ∆t, then the cost is

∫∆t

0
TC( n

∆t
)dt = 1

2Λ n2

∆t
which approaches infinity as ∆t approaches 0.
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The value function V (x, f) of the investor solves the Hamilton-Jacoby-Bellman (HJB)

equation

ρV = sup
τ

{
x>Bf − γ

2
x>Σx− 1

2
τ>Λτ +

∂V

∂x
τ +

∂V

∂f
(−Φf) +

1

2
tr

(
Ω

∂2V

∂f∂f>

)}
. (33)

Maximizing this expression with respect to the trading intensity results in

τ = Λ−1∂V

∂x

>
.

It is natural to conjecture a quadratic form for the value function:

V (x, f) = −1

2
x>Axxx+ x>Axff +

1

2
f>Afff + A0.

We verify the conjecture as part of the proof to the following proposition.

Proposition 4 The optimal portfolio xt tracks a moving “target portfolio” A−1
xxAxfft with a

tracking speed of Λ−1Axx. That is, the optimal trading intensity τt = dxt

dt
is

τt = Λ−1Axx
(
A−1
xxAxfft − xt

)
, (34)

where the positive definite matrix Axx and the matrix Axf are given by

Axx = −ρ
2

Λ + Λ
1
2

(
γΛ−

1
2 ΣΛ−

1
2 +

ρ

4
I
) 1

2
Λ

1
2 (35)

vec(Axf ) =
(
ρI + Φ> ⊗ IK + IS ⊗ (AxxΛ

−1)
)−1

vec(B). (36)

As in discrete time, the optimal trading strategy has a particularly simple form when

trading costs are proportional to the variance of the fundamentals:

Proposition 5 If trading costs are proportional to the amount of risk, Λ = λΣ, then the

optimal trading intensity τt = dxt

dt
is

τt =
a

λ
(target t − xt) (37)
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with

target = (γΣ)−1B

(
I +

a

γ
Φ

)−1

ft (38)

a =
−ρλ+

√
ρ2λ2 + 4γλ

2
. (39)

In words, the optimal portfolio xt tracks target t with speed a
λ

. The tracking speed decreases

with the trading cost λ and increases with the risk-aversion coefficient γ.

If each factor’s alpha decay only depends on itself, Φ = diag(φ1, ..., φK), then the target

is the optimal portfolio without transaction costs with each return-predicting factor ft down-

weighted more the higher is the trading cost λ and the higher is its alpha decay speed φk:

target t = (γΣ)−1B

(
f 1
t

1 + aφ1/γ
, ...,

fKt
1 + aφK/γ

)>
. (40)

When the agent is very patient, that is, ρ = 0, the expressions are even simpler. The

coefficient a is simply a =
√
γλ, and the tracking speed is a

λ
=
√

γ
λ

which clearly decreases

with trading costs λ and increases with risk aversion γ.

2.1 Connection between Discrete and Continuous Time

The continuous-time model, and therefore solution, are readily seen to be the limit of their

discrete-time analogues when parameters are chosen consistently, adjusted for the length of

the time interval between successive trading opportunities.

Proposition 6 Consider the discrete-time model of Section 1 with parameters defined to
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depend on the time interval ∆t in the following way:

Σ̂(∆t) = Σ∆t (41)

Ω̂(∆t) = Ω∆t (42)

Λ̂(∆t) = ∆t
−1Λ or λ̂(∆t) = ∆t

−2λ (43)

B̂(∆t) = B∆t (44)

Φ̂(∆t) = 1− e−Φ∆t (45)

ρ̂(∆t) = 1− e−ρ∆t (46)

γ̂(∆t) = γ. (47)

Then, given the initial position x0, the discrete-time solution converges to the continuous-

time solution as ∆t approaches zero: The optimal discrete-time position converges to the

continuous-time one, i.e., x̂t → xt a.s., as does the optimal trade per time unit, i.e.,

∆x̂t/∆t → τt a.s.

We note that Equations (41)–(42) simply state that the variance is proportional to time.

The adjustment to the trading cost in Equation (43) is different for the following reason.

Suppose that one can trade twice as frequently and consider trading over two time periods.

The same total amount as previously can be traded now by splitting the order in half.

With a quadratic trading cost, this leads to a total trading cost over the two periods of

2 · TC(∆x/2) = 2 · TC(∆x)/4 = TC(∆x)/2. Hence, in order for the total trading costs

to be independent of the trading frequency, Λ must double when the frequency doubles,

explaining the equation for Λ. Another way to say this is that the trading cost over 1 time

period should depend on the intensity of trade ∆x̂t/∆t and the length of the time period ∆t

so that TC = ∆t
∆x̂t

∆t

′
Λ∆x̂t

∆t
= x̂′t

Λ
∆t
x̂t = x̂′tΛ̂x̂t, and this means that Λ̂ = Λ

∆t
. When trading

costs are proportional to Σ, the equation for λ simply follows from the previous analysis and

Λ = λΣ.
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2.2 Persistent Price Impact

In some cases trading may have a significant persistent price impact in addition to the

transitory trading cost that we have studied so far. For this, we consider an investor that

can transact at a price p̄t = pt + Dt by paying a transitory trading cost TC. Here, p is the

price without the effect of the investor’s own trading (as before), TC is as before, and the

new term Dt captures the accumulated price distortion due to the investor’s trades. Trading

with intensity τ pushes prices by C>τ , and the price distortion mean reverts at a speed (or

“resiliency”) R:

dDt = −RDt dt+ C>τt dt (48)

The investor’s objective is as before (i.e., (32)), but now the securities’ alpha (i.e., ex-

pected return Et(dp̄t)) incorporates both the effect of predictability of p by the factors ft

and of the predictability due to price distortions (dDt):

αt = Bft −RDt + C>τt. (49)

The value function now becomes quadratic in the extended state variable (x,D, f):

V (x, f,D) = −1

2
x>Axxx+ x>Axff +

1

2
f>Afff + x>AxDD + f>AfDD +

1

2
D>ADDD + A0.

We solve the HJB equation is before.

Proposition 7 The optimal portfolio xt tracks a moving “target portfolio” with a tracking

speed of Λ−1 (Axx − CADx − C). That is, the optimal trading intensity τt = dxt

dt
is

τt = Λ−1 (Axx − CADx − C) [targett − xt] , (50)

with

targett = (Axx − CADx − C)−1 ((AxD + CADD)Dt + (Axf + CADf ) ft) . (51)
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where the coefficient matrices A solve (A.41) in the appendix.

We see that the optimal trading policy has a similar structure to before, but the persistent

price impact changes both the speed of trading and the target portfolio. One can naturally

also solve the discrete time model with persistent price impact in the same way, and the

result is analogous.4

3 Equilibrium Implications

In this section we study the restrictions placed on a security’s return properties by the market

equilibrium. More specifically, we consider a situation in which an investor facing transaction

costs absorbs a residual supply specified exogenously and analyze the relationship implied

between the characteristics of the supply dynamics and the return alpha.

For simplicity, we consider a model with one security in which L ≥ 1 groups of (exoge-

nously given) noise traders hold positions zlt (net of the aggregate supply) given by

dzlt = κ
(
f lt − zlt

)
dt (52)

df lt = −ψlf ltdt+ dW l
t . (53)

In addition, the Brownian motions W l satisfy vart(dW
l
t )/dt = Ωll. It follows that the aggre-

gate noise-trader holding, zt =
∑

l z
l
t, satisfies

dzt = κ

(
L∑
l=1

f lt − zt

)
dt. (54)

We conjecture that the investor’s inference problem is as studied in Section 2, where f given

by f ≡ (f 1, ..., fL, z) is a linear return predictor and B is to be determined. We verify the

conjecture and find B as part of Proposition 8 below.

4One can also solve the model without transitory trading costs, Λ = 0. In this case, the optimal trading
involves infinite turnover (non-zero quadratic variation) because buying and immediately selling is not costly
when the only friction is persistent price impact in continuous time. It therefore appears more realistic to
have non-zero transitory trading shocks.
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Given the definition of f , the mean-reversion matrix Φ is given by

Φ =


ψ1 0 · · · 0

0 ψ2 · · · 0
...

...
. . .

...

−κ −κ · · · κ

 . (55)

Suppose that the only other investors in the economy are the investors considered in

Section 2, facing transaction costs given by Λ = λσ2. In this simple context, an equilibrium

is defined as a price process and market-clearing asset holdings that are optimal for all

agents given the price process. Since the noise traders’ positions are optimal by assumption

as specified by (52)–(53), the restriction imposed by equilibrium is that the dynamics of the

price are such that, for all t,

xt = −zt (56)

dxt = −dzt. (57)

Using (37), these equilibrium conditions lead to

a

λ
σ−2B(aΦ + γI)−1 +

a

λ
eL+1 = −κ(1− 2eL+1), (58)

where eL+1 = (0, · · · , 0, 1) ∈ RL+1 and 1 = (1, · · · , 1) ∈ RL+1. It consequently follows that,

if the investor is to hold −fLt at time t for all t, then the factor loadings must be given by

B = σ2

[
−λ
a
κ(1− 2eL+1)− eL+1

]
(aΦ + γI)

= σ2 [−λκ(1− 2eL+1)− aeL+1]
(

Φ +
γ

a
I
)
. (59)

For l ≤ L, we calculate Bl further as

Bl = −σ2κ(λψl + λγa−1 + λκ− a)

= −λσ2κ(ψl + ρ+ κ), (60)
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while

BL+1 = σ2(ρλκ+ λκ2 − γ). (61)

Using this, it is straightforward to see the following key equilibrium implications:

Proposition 8 The market is in equilibrium if and only if x0 = −z0 and the security’s alpha

is given by

αt =
L∑
l=1

λσ2κ(ψl + ρ+ κ)(−f lt) + σ2(ρλκ+ λκ2 − γ)zt. (62)

The coefficients λσ2κ(ψk +ρ+κ) are positive and increase in the mean-reversion parameters

ψk and κ and in the trading costs λσ2. In other words, noise trader selling (fkt < 0) increases

the alpha, and especially so if its mean reversion is faster and if the trading cost is larger.

Naturally, noise-trader selling increases the expected excess return (alpha), while noise-

trader buying lowers the alpha, since the arbitrageurs need to be compensated to take the

other side of the trade. Interestingly, the effect is larger when trading costs are larger and

for noise-trader shocks with faster mean reversion because such shocks are associated with

larger trading costs for the arbitrageurs.

4 Application: Dynamic Trading of Commodity Fu-

tures

In this section we apply our framework to trading commodity futures using real data.

4.1 Data

We consider 15 different liquid commodity futures, which do not have tight restrictions on

the size of daily price moves (limit up/down). In particular, we collect data on Aluminum,

Copper, Nickel, Zinc, Lead, and Tin from the London Metal Exchange (LME), on Gas Oil
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from the Intercontinental Exchange (ICE), on WTI Crude, RBOB Unleaded Gasoline, and

Natural Gas from the New York Mercantile Exchange (NYMEX), on Gold and Silver from

the New York Commodities Exchange (COMEX), and on Coffee, Cocoa, and Sugar from

the New York Board of Trade (NYBOT). (This excludes futures on various agriculture and

livestock that have tight price limits.)

We consider the sample period 01/01/1996 – 01/23/2009, for which we have data on all

the commodities.5 Every day, we compute for each commodity the price change of the most

liquid futures contract (among the available contract maturities), and normalize the series

such that each commodity’s price changes have annualized volatility of 10%. We abstract

from the cost of rolling from one futures contract to the next. (In the real world, there is a

separate roll market with small transaction costs, far smaller than the cost of independently

selling the “old” contract and buying the “new” one.)

4.2 Predicting Returns and Other Parameter Estimates

We use the characteristic-based model described in Example 2 in Section 1, where each

commodity characteristic is its own past returns at various horizons. Hence, to predict

returns, we run a pooled panel regression:

rst+1 = 0.000 + 0.011 f 5D,s
t + 0.037 f 1Y,s

t − 0.015 f 5Y,s
t +ust+1 ,

(−0.02) (1.4) (4.6) (−1.85)
(63)

where the left hand side is the commodity price changes and the right hand side contains

the return predictors: f 5D is the average past five days’ price changes, divided by the past

month’s standard deviation of price changes, f 1Y is the past year’s average price change

divided by the past year’s standard deviation, and f 5Y is the analogous quantity for a five-

year window.We report the OLS t-statistics in brackets.

We see that price changes show continuation at short and medium frequencies and re-

5Our return predictors use moving averages of price data lagged up to five years, which are available for
most commodities except some of the LME base metals. In the early sample when some futures do not have
a complete lagged price series, we use the average of the available data.
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versal over long horizons.6 The goal is to see how an investor could optimally trade on this

information, taking transaction costs into account. Of course, these (in-sample) regression

results are only available now and a more realistic analysis would consider rolling out-of-

sample regressions. However, using the in-sample regression allows us to focus on portfolio

optimization. (Indeed, using out-of-sample return forecasts would add noise to the evaluation

of the optimization gains of our method.)

The return predictors are chosen so that they have very different mean reversion:

∆f 5D,s
t+1 = −0.1977f 5D,s

t + ε5D,s
t+1

∆f 1Y,s
t+1 = −0.0034f 1Y,s

t + ε1Y,s
t+1 (64)

∆f 5Y,s
t+1 = −0.0010f 5Y,s

t + ε5Y,s
t+1 .

These mean reversion rates correspond to a 3-day half life for the 5-day signal, a 205-day

half life for the 1-year signal, and a 701-day half life for the 5-year signal.7

We estimate the variance-covariance matrix Σ using daily price changes over the full

sample. We set the absolute risk aversion to γ = 10−9, which we can think of as corresponding

to a relative risk aversion of 1 for an agent with 1 billion dollars under management. We set

the time discount rate to ρ = 1 − exp(−0.02/260) corresponding to a 2 percent annualized

rate. Finally, we set the transaction cost matrix to Λ = λΣ, where we consider λ = 5× 10−7

as well as a higher λ that is twice as large.

4.3 Dynamic Portfolio Selection with Trading Costs

We consider three different trading strategies: the optimal trading strategy given by Equa-

tion (24) (“optimal”), the optimal trading strategy in the absence of transaction costs

6Asness, Moskowitz, and Pedersen (2008) document 12-month momentum and 5-year reversals of com-
modities and other securities. These results are robust and hold both for price changes and returns. The
5-day momentum is less robust. For instance, for certain specifications using percent returns, the 5-day
coefficient switches sign to reversal. This robustness is not important for our study due to our focus on
optimal trading rather than out-of-sample return predictability.

7The half life is the time it is expected to take for half the signal to disappear. It is computed as
log(0.5)/ log(1− .1977) for the 5-day signal.
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(“no-TC”), and the optimal portfolio in a static (i.e., one-period) model with transaction

costs given by Equation (26) (“static”). For the static portfolio we use a modified λ such

that the coefficient on xt−1 is the same as for the optimal portfolio, which is numerically

almost the same as choosing λ to maximize the static portfolio’s net Sharpe Ratio.

The performance of each strategy as measured by the Sharpe Ratio (SR) is reported in

Table 1. The cumulative excess return of each strategy scaled to 10% annualized volatility is

depicted in Figure 3, and Figure 4 shows the cumulative net returns. We see that, naturally,

the highest SR before transaction cost is achieved by the no-TC strategy, and the optimal and

static portfolios have similar drops in gross SR due to their slower trading. After transaction

costs, however, the optimal portfolio is the best, significantly better than the best possible

static strategy, and the no-TC strategy incurs enormous trading costs.

It is interesting to consider the driver of the superior performance of the optimal dynamic

trading strategy relative to the best possible static strategy. The key to the out-performance

is that the dynamic strategy gives less weight to the 5-day signal because of its fast alpha

decay. The static strategy simply tries to control the overall trading speed, but this is not

sufficient: it either incurs large trading costs due to its “fleeting” target (because of the

significant reliance on the 5-day signal), or it trades so slowly it is difficult to capture the

alpha. The dynamic strategy overcomes this problem by trading somewhat fast, but trading

mainly according to the more persistent signals.

To illustrate the difference in the positions of the different strategies, Figure 5 shows the

positions over time of two of the commodity futures, namely Crude and Gold. We see that

the optimal portfolio is a much more smooth version of the no-TC strategy, thus reducing

trading costs.

4.4 Response to New Information

It is instructive to trace the response to a shock to the return predictors, namely to εi,st

in Equation (64). Figure 6 shows the responses to shocks to each return-predictor factor,

namely the 5-day factor, the 1-year factor, and the 5-year factor.
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The first panel shows that the no-TC strategy immediately jumps up after a shock to

the 5-day factor and slowly mean reverts as the alpha decays. The optimal strategy trades

much more slowly and never accumulates nearly as large a position. Interestingly, since the

optimal position also trades more slowly out of the position as the alpha decays, the lines

cross as the optimal strategy eventually has a larger position than the no-TC strategy.

The second panel shows the response to the 1-year factor. The no-TC jumps up and

decays, whereas the optimal position increases more smoothly and catches up as the no-TC

starts to decay. The third panel shows the same for the 5Y signal, except that the effects

are slower and with opposite sign since 5-year returns predict future reversals.

5 Conclusion

This paper provides a highly tractable framework for studying optimal trading strategies in

light of various return predictors, risk and correlation considerations, as well as transaction

costs. We derive an explicit closed-form solution for the optimal trading policy and highlight

several useful and intuitive results. The optimal portfolio tracks a “target portfolio,” which is

analogous to the optimal portfolio in the absence of trading costs in its tradeoff between risk

and return, but different since more persistent return predictors are weighted more heavily

relative to return predictors with faster alpha decay. The optimal strategy is not to trade

all the way to the target portfolio, since this entails too high transaction costs. Instead, it is

optimal to take a smoother and more conservative portfolio that moves in the direction of

the target portfolio while limiting turnover.

Our framework constitutes a powerful tool to optimally combine various return predic-

tors taking into account their evolution over time, decay rate, and correlation, and trading

off their benefits against risks and transaction costs. Such trade-offs are at the heart of

the decisions of “arbitrageurs” that help make markets efficient as per the efficient market

hypothesis. Arbitrageurs’ ability to do so is limited, however, by transaction costs, and our

model provides a tractable and flexible framework for the study of the dynamic implications

of this limitation.
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We illustrate this feature by embedding our setting in an equilibrium model with several

“noise traders” who trade in and out of their positions with varying mean-reversion speeds.

In equilibrium, a rational arbitrageur – with trading costs and using the methodology that we

derive – needs to take the other side of these noise-trader positions to clear the market. We

solve the equilibrium explicitly and show how noise trading leads to return predictability and

return reversals. Further, we show that noise-trader demand that mean-reverts more quickly

leads to larger return predictability. This is because a fast mean reversion is associated with

high transaction costs for the arbitrageurs and, consequently, they must be compensated in

the form of larger return predictability.

We implement our optimal trading strategy for commodity futures. Naturally, the opti-

mal trading strategy in the absence of transaction costs has a larger Sharpe ratio gross of fees

than our trading policy. However, net of trading costs our strategy performs significantly

better since it incurs far lower trading costs while still capturing much of the return pre-

dictability and diversification benefits. Further, the optimal dynamic strategy is significantly

better than the best static strategy – taking dynamics into account significantly improves

performance.

In conclusion, we provide a tractable solution to the dynamic trading strategy in a rele-

vant and general setting that we believe to have many interesting applications.
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A Further Analysis and Proofs

Given the linear dynamics of x, the position xt can be expressed easily as a function of the

initial condition and the exogenous path. These results can be used to provide a simple

proof of Proposition 6.

Proposition 9 In discrete time, the optimal dynamic portfolio xt can be written as a func-

tion of the initial position x0 and the return-predicting factors fs between time 0 and the

current time t:

xt = M t
1x0 +

t∑
s=1

M t−s
1 M2fs, (A.1)

where

M1 = ((1− ρ)Axx + γΣ + Λ)−1Λ = I − Λ−1Axx (A.2)

M2 = ((1− ρ)Axx + γΣ + Λ)−1 (B + (1− ρ)Axf (I − Φ)) = Λ−1Axf . (A.3)

Proposition 10 In continuous time, the optimal dynamic portfolio xt can be written in

terms of the initial position x0 and the path of realized factors fs between 0 and the current

time t:

xt = e−Λ−1Axxtx0 +

∫ t

s=0

e−Λ−1Axx(t−s)Λ−1Axffs ds. (A.4)

Proof of Propositions 1, 2, and 3. We calculate the expected future value function as

Et[V (xt, ft+1)] = −1

2
x>t Axxxt + x>t Axf (I − Φ)ft +

1

2
f>t (I − Φ)>Aff (I − Φ)ft (A.5)

+
1

2
Et(ε

>
t+1Affεt+1) + a0.
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The agent maximizes the quadratic objective −1
2
x>Jtxt + x>t jt + dt with

Jt = γΣ + Λ + (1− ρ)Axx

jt = (B + (1− ρ)Axf (I − Φ))ft + Λxt−1 (A.6)

dt = −1

2
x>t−1Λxt−1 + (1− ρ)

(
1

2
f>t (I − Φ)>Aff (I − Φ)ft +

1

2
Et(ε

>
t+1Affεt+1) + a0

)
.

The maximum value is attained by

xt = J−1
t jt, (A.7)

which proves (11).

The maximum value is equal to V (xt−1, ft) = 1
2
j>t J

−1
t jt + dt and combining this with

(8) we obtain an equation that must hold for all xt−1 and ft. This implies the following

restrictions on the coefficient matrices:

− Axx = Λ(γΣ + Λ + (1− ρ)Axx)
−1Λ− Λ (A.8)

Axf = Λ(γΣ + Λ + (1− ρ)Axx)
−1(B + (1− ρ)Axf (I − Φ)) (A.9)

Aff = (B + (1− ρ)Axf (I − Φ))>(γΣ + Λ + (1− ρ)Axx)
−1(B + (1− ρ)Axf (I − Φ))

+(1− ρ)(I − Φ)>Aff (I − Φ). (A.10)

We next derive the coefficient matrices Axx, Axf , and Aff by solving these equations. For

this, we first rewrite Equation (A.8) by letting Z = Λ−
1
2AxxΛ

− 1
2 and M = Λ−

1
2 ΣΛ−

1
2 , which

yields

Z = I − (γM + I + (1− ρ)Z)−1 ,
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which is a quadratic with an explicit solution. Since all solutions Z can written as a limit of

polynomials of M , Z and M commute and the quadratic can be sequentially rewritten as

(1− ρ)Z2 + Z(I + γM − (1− ρ)I) = γM(
Z +

1

2(1− ρ)
(ρI + γM)

)2

=
γ

1− ρ
M +

1

4(1− ρ)2
(ρI + γM)2,

resulting in

Z =

(
γ

1− ρ
M +

1

4(1− ρ)2
(ρI + γM)2

) 1
2

− 1

2(1− ρ)
(ρI + γM) (A.11)

Axx = Λ
1
2

[(
γ

1− ρ
M +

1

4(1− ρ)2
(ρI + γM)2

) 1
2

− 1

2(1− ρ)
(ρI + γM)

]
Λ

1
2 , (A.12)

that is,

Axx =

(
γ

1− ρ
Λ

1
2 ΣΛ

1
2 +

1

4(1− ρ)2
(ρ2Λ2 + 2ργΛ

1
2 ΣΛ

1
2 + γ2Λ

1
2 ΣΛ−1ΣΛ

1
2 )

) 1
2

− 1

2(1− ρ)
(ρΛ + γΣ). (A.13)

Note that the positive definite choice of solution Z is only one that results in a positive

definite matrix Axx.

In the case Λ = λΣ for some scalar λ > 0, the solution is Axx = aΣ, where a solves

− a =
λ2

γ + λ+ (1− ρ)a
− λ, (A.14)

or

(1− ρ)a2 + (γ + λρ)a− λγ = 0, (A.15)

with solution

a =

√
(γ + λρ)2 + 4γλ(1− ρ)− (γ + λρ)

2(1− ρ)
. (A.16)
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The other value-function coefficient determining optimal trading is Axf , which solves the

linear equation (A.9). To write the solution explicitly, we note first that, from (A.8),

Λ(γΣ + Λ + (1− ρ)Axx)
−1 = I − AxxΛ−1. (A.17)

Using the general rule that vec(XY Z) = (Z> ⊗X) vec(Y ), we re-write (A.9) in vectorized

form:

vec(Axf ) = vec((I − AxxΛ−1)B) + ((1− ρ)(I − Φ)> ⊗ (I − AxxΛ−1)) vec(Axf ), (A.18)

so that

vec(Axf ) =
(
I − (1− ρ)(I − Φ)> ⊗ (I − AxxΛ−1)

)−1
vec((I − AxxΛ−1)B). (A.19)

In the case Λ = λΣ, the solution is

Axf = λB((γ + λ+ (1− ρ)a)I − λ(1− ρ)(I − Φ))−1

= λB((γ + λρ+ (1− ρ)a)I + λ(1− ρ)Φ))−1 (A.20)

= B
(γ
a

+ (1− ρ)Φ
)−1

. (A.21)

Finally, Aff is calculated from the linear equation (A.10), which is of the form

Aff = Q+ (1− ρ)(I − Φ)>Aff (I − Φ) (A.22)

with

Q = (B + (1− ρ)Axf (I − Φ))>(γΣ + Λ + (1− ρ)Axx)
−1(B + (1− ρ)Axf (I − Φ))

a positive-definite matrix.

The solution is easiest to write explicitly for diagonal Φ, in which case

Aff,ij =
Qij

1− (1− ρ)(1− Φii)(1− Φjj)
. (A.23)
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In general,

vec (Aff ) =
(
I − (1− ρ)(I − Φ)> ⊗ (I − Φ)>

)−1
vec(Q). (A.24)

One way to see that Aff is positive definite is to iterate (A.22) starting with A0
ff = 0, given

that I ≥ I − Φ.

Having computed the coefficient matrices, finishing the proof is straightforward. Equa-

tion (16) follows directly from (11). Equation (13) follows from (16) by using the equations

for Axf and a, namely (A.9) and (A.14).

Proof of Propositions 4 and 5. Given the conjectured value function, the optimal choice

τ equals

τt = −Λ−1Axxxt + Λ−1Axfft,

Once this is inserted in the HJB equation, it results in the following equations defining the

value-function coefficients (using the symmetry of Axx):

− ρAxx = AxxΛ
−1Axx − γΣ (A.25)

ρAxf = −AxxΛ−1Axf − AxfΦ +B (A.26)

ρAff = A>xfΛ
−1Axf − 2AffΦ. (A.27)

Pre- and post-multiplying (A.25) by Λ−
1
2 , we obtain

− ρZ = Z2 +
ρ2

4
I − C, (A.28)

that is,

(
Z +

ρ

2
I
)2

= C, (A.29)
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where

Z = Λ−
1
2AxxΛ

− 1
2 (A.30)

C = γΛ−
1
2 ΣΛ−

1
2 +

ρ2

4
I. (A.31)

This leads to

Z = −ρ
2
I + C

1
2 ≥ 0, (A.32)

implying that

Axx = −ρ
2

Λ + Λ
1
2

(
γΛ−

1
2 ΣΛ−

1
2 +

ρ2

4

) 1
2

Λ
1
2 . (A.33)

The solution forAxf follows from Equation (A.26), using the general rule that vec(XY Z) =

(Z> ⊗X) vec(Y ):

vec(Axf ) =
(
ρI + Φ> ⊗ IK + IS ⊗ (AxxΛ

−1)
)−1

vec(B)

If Λ = λΣ, then Axx = aΣ with

− ρa = a2 1

λ
− γ (A.34)

with solution

a = −ρ
2
λ+

√
γλ+

ρ2

4
λ2. (A.35)

In this case, (A.26) yields

Axf = B
(
ρI +

a

λ
I + Φ

)−1

= B
(γ
a
I + Φ

)−1

,

where the last equality uses (A.34).
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Then we have

τt =
a

λ

[
Σ−1B (aΦ + γI)−1 ft − xt

]
(A.36)

It is clear from (A.35) that a
λ

decreases in λ and increases in γ.

Proof of Proposition 6. We prove this proposition in two main steps. We use the

notation from Proposition 9.

(i) It holds that

M1(∆t) = I −
(
Λ−1Axx +O(∆t)

)
∆t

M2(∆t) =
(
Λ−1Axf +O(∆t)

)
∆t

as ∆t → 0.

(ii) M1(∆t)
t

∆t → e−Λ−1Axxt uniformly on [0, T ] for any T > 0. For any continuous path u,

x̂t → xt uniformly on [0, T ] for any T > 0. It then follows immediately from (9) and (34)

that ∆xt

∆t
→ τt.

Proof of Proposition 7. The HJB equation is

ρV = max
τ

{
x>
(
Bf −RD + C>τ

)
− γ

2
x>Σx+

∂V

∂f
(−Φf) +

∂V

∂x
τ +

∂V

∂D

(
−RD + C>τ

)}
= max

τ

{
x>Bf − γ

2
x>Σx− 1

2
τ>Λτ + τ τ (−Q1xx+Q1DD +Q1ff) +

∂V

∂f
(−Φf)−(

D>ADD + f>AfD + x>AxD
)
RD

}
, (A.37)

with

−Q1x = −Axx + CADx + C

Q1D = AxD + CADD (A.38)

Q1f = Axf + CADf .
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It follows immediately that

τ = Λ−1Q1x [target− x] (A.39)

= Λ−1 (Axx − CADx − C) [target− x] ,

with

target =
[
Q−1

1xQ1D

]
D +

[
Q−1

1xQ1f

]
f (A.40)

= (Axx − CADx − C)−1 ((AxD + CADD)D + (Axf + CADf ) f) .

The coefficient matrices solve the system:

− ρAxx = −γΣ +Q>1xΛ−1Q1x

= −γΣ + (Axx − CADx − C)> Λ−1 (Axx − CADx − C)

ρAxD = −Q>1xΛ−1Q1D −AxDR−R

= − (Axx − CADx − C)> Λ−1 (AxD + CADD)−AxDR−R

ρADD = Q>1DΛ−1Q1D − 2ADDR (A.41)

= (AxD + CADD)> Λ−1 (AxD + CADD)− 2ADDR

ρAxf = B −Q>1xΛ−1Q1f −Axf Φ

= B − (Axx − CADx − C)> Λ−1 (Axf + CADf )−Axf Φ

ρADf = −ADf Φ−R>ADf + (AxD + CADD)> Λ−1 (Axf + CADf )

ρAff = Q>1f Λ−1Q1f − 2Aff Φ

= (Axf + CADf )> Λ−1 (Axf + CADf )− 2Aff Φ.

We note that the first three equations above have to be solved simultaneously for Axx, AxD,

and ADD; there is no closed-form solution. The complication is due to the fact that current

trading affects the persistent price component D (that is, C 6= 0).

Proof of Proposition 8. Suppose that αt = Bft with B given by (59) and apply

Proposition 5 to conclude that, if xt = −fK+1
t , then dxt = −dfK+1

t . The comparative-static

results are immediate.
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Table 1: Performance of Trading Strategies Before and After Transaction Costs.
This table shows the annualized Sharpe ratio gross and net of trading costs for the optimal
trading strategy in the absence of trading costs (“no TC”), our optimal dynamic strategy
(“optimal”), and a strategy that optimizes a static one-period problem with trading costs
(“static”). Panel A illustrates this for a low transaction cost parameter, while Panel B has
a high one.

Panel A: Low Transaction Costs

no TC optimal static
gross SR 0.79 0.63 0.64
net SR −18 0.54 0.44

Panel B: High Transaction Costs

no TC optimal static
gross SR 0.79 0.57 0.58
net SR −22 0.45 0.33
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contracts of crude

contracts of copper

old position xt-1

Et(targett+1)

statict

targett

new position xt

Figure 1: Optimal Trading Strategy: Triangulating between Current, Static, and
Future Portfolios. This figure shows how the optimal trade moves from the existing posi-
tion xt−1 towards the target, trading only part of the way to the target to limit transactions
costs. The target is an average of the static Markowitz portfolio and the expected future
target, which depends on the optimal portfolio in the future including the return predictors’
expected alpha decay.
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contracts of crude

contracts of copper

old position xt-1

fast signal

slow signal

targett

new position xt

Figure 2: Optimal trading strategy: Down-Weight Fast-Decay Factors. This figure
shows how the optimal trade moves from the existing position xt−1 towards the target, which
put more weight on slow persistent factors relative to factors with fast alpha decay.
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Figure 3: Cumulative Excess Returns Gross of Transactions Costs. This figure shows
the cumulative excess returns before transactions costs for the the optimal trading strategy
in the absence of trading costs (“no TC”), our optimal dynamic strategy (“optimal”), and
a strategy that optimizes a static one-period problem with trading costs (“static”).
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Figure 4: Cumulative Excess Returns Net of Transactions Costs. This figure shows
the cumulative excess returns after transactions costs for the the optimal trading strategy
in the absence of trading costs (“no TC”), our optimal dynamic strategy (“optimal”), and
a strategy that optimizes a static one-period problem with trading costs (“static”).
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Figure 5: Positions in Crude and Gold Futures. This figure shows the positions in
crude and gold for the the optimal trading strategy in the absence of trading costs (“no
TC”) and our optimal dynamic strategy (“optimal”) using high and low transactions costs.
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Figure 6: Optimal Trading in Response to Shock to Return Predicting Signals.
This figure shows the response in the optimal position following a shock to a return predictor
as a function of the number of days since the shock. The top left panel does this for a shock
to the fast 5-day return predictor, the top right panel considers a shock to the 12-month
return predictor, and the bottom panel to the 5-year predictor. In each case, we consider
the response of the optimal trading strategy in the absence of trading costs (“no TC”) and
our optimal dynamic strategy (“optimal”) using high and low transactions costs.
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