
1.10. SOLUTIONS TO SELECTED EXERCISES

Solution 1.7: Take Ω = R with its Borel sets, fα = χ{α} , and note that supα∈E fα = χE is not
Borel-measurable, if E is not a Borel set (recall Remark 1.3, last sentence).

Solution 1.10: (i). If c = 0 there is nothing to prove; if c > 0 we have

{cf > α} ≡ {ω ∈ Ω | cf(ω) > α} = {ω ∈ Ω | f(ω) > α/c} ∈ F ,

and the case c < 0 is similar.

(ii). If α ≥ 0 , we have {f2 > α} = {f >
√

α } ∪ {f < −√α } ∈ F ; if α < 0 , then {f2 > α} = Ω .

(iii). For every rational number % ∈ Q we have C% := {f > %} ∩ { g > α − %} ∈ F . Now observe
that we have {f + g > α} ≡ {f > α− g} = ∪%∈Q C% ∈ F .

(iv). Follows from parts (i)-(iii) and fg = 1
4

[
(f + g)2 − (f − g)2

]
.

(v). For every α ≥ 0 we have {|f | > a} = {f > α} ∪ {f < −α} ∈ F ; if α < 0 , then {|f | > α} = Ω .

(vi). Observe f+ = 1
2 (f + |f |) , f− = 1

2 (|f | − f) and use parts (i), (iii) and (v).

Solution 2.1:
∫ |f |p dµ ≥ ∫

{|f |≥a} |f |p dµ ≥ ap · µ (|f | ≥ a) .

Now {f 6= 0} = ∪∞n=1{|f | ≥ 1/n} and µ(|f | ≥ 1/n) ≤ np · I(|f |p) < ∞ if I(|f |p) < ∞, so {f 6= 0}
is σ−finite.

Solution 2.2: Without loss of generality, assume m = 1 and write E1 \ F∞ = ∪∞k=1Fk for the
pairwise-disjoint sets F∞ = ∩∞n=1En and Fk = Ek \Ek+1 ( k ∈ N ). Now repeat the argument of (2.8).

Solution 2.3: (i). If f =
∑m

j=1 αjχEj is simple, then obviously I(f) = 0 ⇔ αjµ(Ej) = 0, ∀ j =
1, · · · ,m ⇔ f = 0, µ−a.e. For a general f ∈ L+ with µ(f 6= 0) = 0 , we have also ϕ = 0, µ−a.e. for
every simple ϕ with 0 ≤ ϕ ≤ f , thus I(f) = 0 from (1.3).

If I(f) = 0 , then Fn := {f > 1/n} , n ∈ N defines a sequence of sets which increase to
F := {f > 0} , with I(f) ≥ I(fχFn) ≥ (1/n) · µ(Fn) ≥ 0 for every n ∈ N. Thus µ(Fn) = 0 , and (2.5)
gives µ(F ) = 0 .

(iv) We have E = ∩∞n=1En , where En := {f > n} , n ∈ N defines now a decreasing sequence
with n · µ(En) ≤ I(fχEn) ≤ I(f) < ∞ . From this and (2.15), we conclude µ(E) = limn µ(En) = 0 .
On the other hand, we have F = ∪∞n=1Fn in the notation of (i), and µ(Fn) ≤ n I(f) < ∞ for every
n ∈ N.

Solution 2.3: (vi). It is clear that ν is a measure for f simple. Otherwise, consider an increasing
sequence {gn} ⊆ S of simple functions with the property (2.12), and note νn(E) :=

∫
E

gn dµ ↑∫
E

f dµ = ν(E) , by the Monotone Convergence Theorem. Take disjoint sets {Gn}n∈N ⊆ F , let
G := ∪∞n=1Gn , observe

M∑

j=1

νn(Gj) ≤
∞∑

j=1

νn(Gj) = νn(G) ≤
∞∑

j=1

ν(Gj) , ∀n ∈ N

and let n → ∞ to obtain
∑M

j=1 ν(Gj) ≤ ν(G) ≤ ∑∞
j=1 ν(Gj) , for all M ∈ N. Now let M → ∞ ,

and countable additivity follows.
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The property
∫

g dν =
∫

fg dµ is obvious, if g is simple. If not, recall

∫
g dν = sup

ϕ∈S
0≤ϕ≤g

∫
ϕdν = sup

ϕ∈S
0≤ϕ≤g

∫
ϕf dµ ≤ sup

ψ∈L+
0≤ψ≤fg

∫
ψ dµ =

∫
fg dµ

from (iii); on the other hand,
∫

g dν ≥ ∫
g dνn =

∫
fng dµ holds for every n ∈ N thanks to (v) and

the fact that fn is simple, so that
∫

g dν ≥ ∫
fg dµ follows, by Monotone Convergence.

Solution 2.4: (iii). For the implication (⇐) in the first equivalence, note

∣∣I (fχE)− I (gχE)
∣∣ ≤

∣∣I ((f − g) · χE)
∣∣ ≤ I(|f − g|) , ∀ E ∈ F .

For the reverse implication (⇒) in this equivalence, take successively E = {f > g}, E = {f ≤ g} to
obtain I(|f − g|) = I

(
(f − g) · χ{f>g}

)
+ I

(
(g − f) · χ{f≤g}

)
= 0, thanks to Exercise 2.3(i).

(iv) Consider the measurable functions gm :=
∑m

n=1 fn , hm :=
∑m

n=1 |fn| ↑
∑∞

n=1 |fn| =: h

with |gm| ≤ hm ≤ h for all m ∈ N. From Exercise 2.3(ii),(iv) we have I(h) = I (
∑∞

n=1 |fn|) =∑∞
n=1 I(|fn|) < ∞ and the set E = {h = ∞} has µ(E) = 0. Thus the function g(ω) :=

limm→∞ gm(ω), ω ∈ Ec and g(ω) := 0, ω ∈ E satisfies I(g) = limm→∞ I(gm) , or equiva-
lently I (

∑∞
n=1 fn) = limm→∞ I (

∑m
n=1 fn) = limm→∞

∑m
n=1 I (fn) =

∑∞
n=1 I (fn) by Dominated

Convergence.

Solution 2.5: For (i), observe lim infn En = ∪n≥1 ∩k≥n Ek = ∪n≥1Fn, with Fn := ∩k≥nEk, n ≥ 1
an increasing sequence. Therefore,

µ(lim inf
n

En) = µ (∪∞n=1Fn) = lim
n

µ(Fn) ≤ lim inf
n

µ(En) ,

using the continuity from below property (2.5). Similarly for (ii), using the continuity from above
property (2.15).

As for (iii),
∑∞

n=1 µ(En) < ∞ implies µ (∪∞n=1En) < ∞, and using continuity from above along
with subadditivity, one gets:

µ(lim sup
n

En) = lim
n

µ (∪∞k=nEk) ≤ lim
n

∞∑

k=n

µ(Ek) = 0 .

Solution 2.6: Just apply (2.12) to obtain increasing sequences {g(±)
n } of simple functions, with

0 ≤ g
(±)
1 ≤ . . . g

(±)
n −→ f± pointwise; then verify that gn := g

(+)
n − g

(−)
n have the desired properties.

Solution 1.9: (ii). If g = h ◦ f for some h : R → R , then g−1(E) = f−1(h−1(E)) = f−1(B) for
B := h−1(E) ∈ B(R) , for arbitrary E ∈ B(R) . In other words, {g−1(E) ; E ∈ B(R)} ⊆ {f−1(B) ; B ∈
B(R)} , or σ(g) ⊆ σ(f) .

Now start by assuming σ(g) ⊆ σ(f) . Suppose first that g is simple, i.e., g =
∑m

j=1 aj χEj with
{aj}m

j=1 ⊂ R , and {Ej}m
j=1 ⊂ F disjoint with Ω as their union. We have that Ej ∈ σ(g) ⊆ σ(f) =

f−1(B(R)) is then of the form Ej = f−1(Bj) for some Bj ∈ B(R)) , j = 1, · · · ,m , thus g(ω) =∑m
j=1 aj χf−1(Bj)(ω) =

∑m
j=1 aj χBj (f(ω)) = h(f(ω)) , where the simple function h :=

∑m
j=1 aj χBj is

B(R)−measurable. For Borel-measurable g : R → [0,∞) , take a sequence of simple, σ(f)−measurable
functions {gn}n∈N increasing to g pointwise, with gn = hn ◦ f for some simple, Borel-measurable
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hn : R → [0,∞) ; now let h := lim supn hn and observe that g = limn gn = limn(hn ◦ f) = h ◦ f .
Finally, decompose an arbitrary Borel-measurable g : R → R as g = g+ − g− , and repeat the above
procedure to each of g± .

Solution 3.1: For any D ∈ G , E ∈ G , we have D ∪ E ∈ E . Indeed, the complement of
E can be written as a finite union Ec = ∪n

j=1Fj of pairwise-disjoint sets {Fj}n
j=1 ⊆ G ; thus

D \E = ∪n
j=1(D∩Fj) , and D∪E = (D \E)∪E = E∪(∪n

j=1(D ∩ Fj)
)

is a finite union of disjoint sets
in G . By induction, it is seen that for any {Ek}m

k=1 ⊆ G , the union ∪m
k=1Ek can be written as a finite

disjoint union of sets from G , and thus belongs to E . It follows that E is closed under finite unions.
To see that E is also closed under complementation, take {Ek}m

k=1 ⊆ G with Ec
k = ∪n

j=1F
(j)
k a finite

union of disjoint subsets from G , for each k = 1, · · · ,m ; then (∪m
k=1E

m
k=1)

c = ∩m
k=1

(
∪n

j=1F
(j)
k

)
=

∪{F
(j1)
1 ∪ · · · ∪ F

(jm)
m ; j1 , · · · , jm = 1, · · · , n } is a disjoint union of sets from G , therefore belongs to

E .

Solution 3.4: (i). The class G of null sets is closed under countable unions, and thus so is F̄ ;
indeed, if {En} ⊆ F , {An} ⊆ G and Fn ⊆ An for every n ∈ N , then ∪n(En ∪ Fn) = E ∪ F , where
E := ∪nEn ∈ F and F := ∪nFn ⊆ ∪nAn ∈ G .

Now F is also closed under complementation; to see this, take E ∪ F ∈ F with E ∈ F , F ⊆
A ∈ G , assume E ∩ A = ∅ (otherwise, replace F , A by F \ E , A \ E ) and write (E ∪ F )c =
(E ∪A)c ∪ (A \ F ) ∈ F , because A \ F ∈ N . Thus F is a σ-algebra.

If E = Ei ∪ Fi with Ei ∈ Fi , Fi ⊆ Ai ∈ G (i = 1, 2) , then µ(E1) ≤ µ(E2) + µ(A2) = µ(E2) ;
similarly, µ(E2) ≤ µ(E1) , thus µ̄ is well-defined on F̄ . It is checked easily that µ̄ agrees with µ on F .
To verify that µ̄ is countably additive, take a sequence {En ∪ Fn}n∈N of pairwise-disjoint sets with
En ∈ F , Fn ⊆ An ∈ G , En∩An = ∅ and observe µ̄ (∪∞n=1(En ∪ Fn)) = µ (∪∞n=1En) =

∑∞
n=1 µ(En) =∑∞

n=1 µ̄(En ∪ Fn) . Clearly, N ⊆ F , so µ̄ is a complete measure on F .
Suppose ν is another measure on F that agrees with µ on F . To prove ν = µ̄ , consider arbitrary

E ∈ F , F ⊆ A ∈ G and observe

µ(E) = ν(E) ≤ ν(E ∪ F ) ≤ ν(E ∪A) = µ(E ∪A) ≤ µ(E) + µ(A) = µ(E) ,

thus ν(E ∪ F ) = µ(E) and ν ≡ µ̄ .

Solution 3.5: (i). If µ∗(E) = 0 , we have by monotonicity µ∗(A ∩E) = 0 as well, for every A ⊆ Ω,
and thus µ∗(A) ≥ µ∗(A∩Ec) = µ∗(A∩E) + µ∗(A∩Ec) . In other words E ∈M , and the restriction
of µ∗ to M is a complete measure.

Solution 3.6: (i). For any given B ∈ B(R) we have by assumption A := {g ∈ B , f 6= g} ⊆ {f 6=
g} ∈ N ⊆ F , since the space is complete. Thus {f = g} ∈ F , and {g ∈ B} = {f ∈ B , f = g}∪A ∈ F ,
since f is measurable.

Solution 3.7: Clearly E ⊆M := m(E) ⊆ σ(E) ; and in order to show the reverse inclusion σ(E) ⊆M ,
it suffices to prove that M is a σ−algebra. Indeed, as we shall see below, for any F ∈ M , G ∈ M
the sets

F \G , G \ F , F ∩G belong to M , (10.1)

and because Ω ∈ E we deduce that M is an algebra. Now, for any {En}n∈N , the sets Fn :=
∪n

j=1Ej , n ∈ N belong to M , and ∪j∈NEj = ∪n∈NFn = limn ↑, Fn ∈ M , so M is indeed a
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σ−algebra. To see the property (∗) , fix an arbitrary G ∈ M and consider the class C(G) := {F ∈
M| (10.1) holds } . This contains ∅ and G , is a monotone class, and F ∈ C(G) implies G ∈ C(F ) .
Also, for G ∈ E , we have F ∈ E ⇒ F ∈ C(G) (because E is an algebra), thus E ⊆ C(G) and
M ⊆ C(G) ; in other words, E ⊆ M ⊆ ∩G∈EC(G) . In other words, for every G ∈ M we have:
G ∈ C(F ) , ∀F ∈ E , which implies F ∈ C(G) , ∀F ∈ E , which implies E ⊆ C(G) , which implies
M⊆ C(G) because C(G) is a monotone class. We conclude that M≡ C(G) .

Solution 3.8: (i). If D is both a π−system and a λ−system, then it is closed under complementation
and finite unions. Indeed, for every sequence {En}n∈N ⊆ D we have Ec

i = Ω\E1 ∈ D and E1∪E2

(
Ec

1∩
Ec

2

)c ∈ D . To show that D is closed also under countable unions, just observe that Gn := ∪n
j=1Ej ∈ D

for every integer n and Gn ↑ ∪∞j=1Ej =: G, so that G ∈ D as well. The reverse implication is trivial.
The intersection of an arbitrary collection of λ−systems is also a λ−system; so for any collection

A ⊆ F of subsets of Ω we can define λ(A) as the intersection of all λ−systems that contain A. This
is the smallest λ−system that contains A, and clearly A ⊆ λ(A) ⊆ σ(A).

(ii). Now let us show λ(D) = σ(D) for any π−system D. In particular, that any λ−system which

contains a π−system also contains the σ−algebra generated by it.
Thanks to the above discussion we need only show that A := σ(D) is a π−system; that is, closed

under pairwise intersections. Consider first the class

A1 := {A ∈ A |A ∩B ∈ A , ∀B ∈ D } .

Because D is a π−system we have D ⊆ A1. We also can check that A1 is a λ−system, because so is
A. Since A is the smallest λ−system that contains D, this shows that A1 = A . Next, let us look at
the class

A2 := {A ∈ A |A ∩B ∈ A , ∀B ∈ A}
and deduce D ⊆ A2 from A1 = A. We also check that A2 is a λ−system, so A2 = A and thus A is a
π−system.

(iii). The class E := {E ∈ F |µ(E) = ν(E) } is a λ−system. Indeed, Ω ∈ E by assumption; and
if A, B with B ⊆ A are in E , we have µ(A\B) = µ(A)−µ(B) = ν(A)−ν(B) = ν(A\B) because µ, ν

are finite measures (the finiteness assumption is crucial here), so A\B ∈ E ; whereas for any increasing
sequence {En} ⊆ E with E := ∪∞n=1En ∈ F we have µ(E) = limn ↑ µ(En) = limn ↑ ν(En) = ν(E)
from (2.5), so E ∈ E . By assumption D ⊆ E , and from part (i) we get σ(D) = λ(D) ⊆ E , Q.E.D.

Solution 4.1: For the first claim, denote its right-had side by ρ(E) . If E ⊆ ⋃
n∈N(an, bn) , let

λn := bn − an , I
(k)
n := (bn − λn21−k, bn − λn2−k) for k ∈ N , so that

(an, bn) =
⋃

n∈N

I(k)
n , E ⊆

⋃

n∈N

⋃

k∈N

I(k)
n and

∑

n∈N

µF ((an, bn)) =
∑

n∈N

∑

k∈N

µF (I(k)
n ) ≥ µF (E) .

It follows that ρ(E) ≥ µF (E) . For the reverse inequality, given any δ > 0 we find a sequence
{(an, bn)}n∈N with E ⊆ ⋃

n∈N(an, bn) and
∑

n∈N µF ((an, bn)) ≤ µF (E) + δ from (4.1)′, and for each
n ∈ N a ζn > 0 such that F (bn + ζn)− F (bn) < δ2−n . Then we have E ⊆ ⋃

n∈N(an, bn + ζn) and

∑

n∈N

µF ((an, bn + ζn)) ≤
∑

n∈N

[
µF ((an, bn]) + δ2−n

] ≤
∑

n∈N

µF ((an, bn]) + δ ≤ µF (E) + 2δ ,
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and ρ(E) ≤ µF (E) follows.

. If U is open and E ⊆ U , clearly µF (E) ≤ µF (U) and µF (E) ≤ inf U∈O
U⊇E

µF (U) . The reverse

inequality follows from (4.1)′, once we consider every U ∈ O with U ⊇ E as a countable union of open
intervals, so that µF (U) ≤ ∑

n∈N µF ((an, bn)) .

. For the third claim, suppose first that E is bounded. If it is also closed (i.e., E = E), then E is
compact and there is nothing to prove. If not, given any δ > 0 we can choose U ∈ O, U ⊇ E \E with
µF (U) ≤ µF (E \ E) + δ . Then K := E \ U is compact, K ⊆ E and

µF (K) = µF (E)−µF (E∩U) = µF (E)−(
µF (U)−µF (U\E)

) ≥ µF (E)−µF (U)+µF (E\E)
) ≥ µF (E)−δ .

If E is unbounded, consider En := E∩ (n, n+1) . From what has been shown, for every δ > 0 and
n ∈ N there exists a compact set Kn ⊆ En with µF (Kn) ≥ µF (En)−δ2−n . The set Cn :=

⋃n
j=−n Kj

is compact, it is contained in E, and we have

µF (Cn) ≥ µF

( n⋃

j=−n

Ej

)
− ε . But µF (E) = lim

n
µF

( n⋃

j=−n

Ej

)
, and the result follows.

Solutions 4.5, 4.6: (ii) For a given partition Π , the simple functions ḡΠ :=
∑n

j=1 M j χ(tj−1,tj ] and
gΠ :=

∑n
j=1 M j χ(tj−1,tj ] satisfy gΠ ≤ f ≤ ḡΠ as well as S(f ; Π) ≡ I(gΠ) ≤ I(ḡΠ) ≡ S(f ; Π). If f

is Riemann-integrable, there exists a nested sequence of partitions
{
Π(k)

}
k∈N

, with mesh ||Π(k)|| :=

max1≤j≤n(k)(t(k)
j − t

(k)
j−1) −→ 0 as k →∞, such that

lim
k→∞

I(g(k)) = lim
k→∞

I(ḡ(k)) = R(f) , where g(k) ≡ gΠ(k)
, ḡ(k) ≡ ḡΠ(k)

.

Now the limits g := limk→∞ ↑ g(k) ≤ f ≤ limk→∞ ↓ ḡ(k) =: ḡ exist and are Lebesgue-measurable,
as limits of monotone sequences of simple functions. Thus I(g) = limk→∞ ↑ I(g(k)) ≤ limk→∞ ↓
I(ḡ(k)) = I(ḡ), by the Dominated Convergence Theorem. It follows that I(g) = I(ḡ) = R(f) ,
thus g = ḡ (= f) , λ̄−a.e. Since g (ḡ) are Lebesgue-measurable and (R,L, λ̄) is complete, it follows
from Exercise 3.6 that f is Lebesgue-measurable as well. But then f is Lebesgue-integrable, and
I(f) = I(g) = I(ḡ) = R(f) .

For the function f = χQ , the Darboux sums are S(f ; Π) ≡ 1 and S(f ; Π) ≡ 0 across partitions,
so R(f) = 0 , R̄(f) = 1 so the Riemann integral does not exist. On the other hand, Q is clearly
a Borel set (countable union of singletons), so the simple function f = χQ is Borel-measurable and
I(f) = λ(Q) =

∑
q∈Q λ({q}) = 0 .

Solution 4.10: There exists a compact set K ⊂ I with t < λ(K) ; recall the regularity property
(1.9). Then K ⊂ ∪n

i=1Ji for some {J1, · · · , Jn} ⊂ U enumerated so that λ(J1) ≥ λ(J2) ≥ · · · ≥ λ(Jn) .
Put I1 := J1 ; for j = 2, 3, · · · , select Ij := Jm(j) , where m = m(j) is the smallest index for which
Jm does not intersect any I1, · · · , Ij−1 .

Let Lj be the interval with the same center as Ij but three times as long. Then either each Ji is
one of I1, · · · , In ; or else Ji intersects Ij = J` for some ` < k , so that λ(Ji) ≤ λ(J`) and Ji ⊆ Lj .
Then, with r the largest index j for which Ij is defined:

t < λ(K) < λ (∪n
i=1Ji) ≤

r∑

j=1

λ(Lj) = 3 ·
r∑

j=1

λ(Ij) .
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Solution 4.11: It suffices to show that limδ↓0 1
δ µ

(
(x−δ, x+δ)

)
= 0 holds for λ−a.e. x ∈ A . Define

Fk :=

{
x ∈ A

∣∣∣ lim δ↓0
δ∈Q

µ
(
(x− δ, x + δ)

)

δ
>

1
k

}
,

a measurable set for each k ∈ N (justify!). For each ε > 0 , there exists an open set V with A ⊂ V

and µ(V ) < ε (the regularity property of (1.9)). For every x ∈ Fk , there exists a rational number
δ > 0 such that (x − δ, x + δ) ⊂ V and µ

(
(x− δ, x + δ)

)
> δ/k . Such intervals (x − δ, x + δ) cover

Fk ; thus, from Exercise 4.7, for any given t < λ(Fk) there exist finitely many disjoint subintervals
I1, · · · , Ir of V with

t ≤ 3 ·
r∑

j=1

λ(Ij) ≤ 6k

r∑

j=1

µ(Ij) ≤ 6k · µ(V ) ≤ 6k ε .

In other words, λ(Fk) ≤ 6k ε , so λ(Fk) = 0 for every k ∈ N ( just let ε ↓ 0 ), and then let k →∞
to conclude.

Solution 4.14: The second equation clearly follows from the first. If µ = µ+ − µ− is the signed
measure associated with the function A, and ν = ν+ − ν− the signed measure associated with the
function B, then both sides of the first equation express the product measure (µ⊗ ν)

(
[0, t]2

)
.

Indeed, this is very clear for the left-hand side. As for the right-hand side,
∫ t

0
A(s) dB(s) is the

measure of the upper triangle including the diagonal, whereas
∫ t

0
B(s−) dA(s) the measure of the lower

triangle excluding the diagonal.

Solution 4.15: The result is true for Φ(x) = x and, if it is true for some Φ , it is also true for
x 7→ xΦ(x) by the integration-by parts formula. Thus, the formula is true for polynomials. Now
approximate any continuous and continuously differentiable function by polynomials, to get the result.

Solution 4.16: An application of the integration by parts formula to the product of the functions
t 7→ ∏

0≤s≤t

(
1 + ∆A(s)

)
and t 7→ eAc(t) , both right-continuous and of finite variation, shows rather

easily that this product is indeed as solution of the integral equation.
Now suppose that Z(·) , Z̃(·) are solutions of the integral equation; their difference D(·) :=

Z(·) − Z̃(·) solves the equation D(t) =
∫ t

0
D(s−) dA(s) , 0 ≤ t < ∞ . With V (t) denoting the total

variation of A(·) on the interval [0, t] , and M(t) := sup0≤s≤t |D(s)| , we have then |D(t)| ≤ M(t)V (t) ,
therefore also

|D(t)| ≤ M(t)
∫ t

0

V (s−) dV (s) ≤ M(t) · 1
2

V 2(t) , 0 ≤ t < ∞

thanks to the integral equation for D(·) and the integration by parts formula of Exercise 4.14. Iterating
this procedure, we obtain

|D(t)| ≤ M(t)
n!

∫ t

0

V n(s−) dV (s) ≤ M(t) · 1
(n + 1)!

V n+1(t) , 0 ≤ t < ∞

for every integer n , and deduce D(·) ≡ 0 .

Solution 4.17: The increase of Γ(·) and the inequalities A
(
Γ(u)

) ≥ u , Γ
(
A(t)

) ≥ t are quite clear.
On the other hand, the set { t ≥ 0 |A(t) > u} is the union of the sets { t ≥ 0 |A(t) > u + ε} over
ε > 0 , and the right-continuity of Γ(·) follows.
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Now for Γ(u) > t we have A(t) ≤ u ; therefore, A(t) ≤ inf{u ≥ 0 |Γ(u) > t } . To obtain
an inequality in the reverse direction, observe that we have Γ

(
A(t + δ)

) ≥ t + δ > t , thus also
A(t + δ) ≥ inf{u ≥ 0 |Γ(u) > t } , for every δ > 0 . Now recall that A(·) is right-continuous, to deduce
A(t) ≥ inf{u ≥ 0 |Γ(u) > t } .

For the choice h(s) = χ[0,t](s) , the change-of-variable formula reads A(t) =
∫∞
0

χ{Γ(u)≤t} du ; but
this is a consequence of the definition of Γ(·) . By taking differences, the formula is seen to hold also
for indicators of the type χ(r,t] ; and by monotone class arguments, for any h with compact support.
Taking increasing limits gives the validity of the change of variable formula in the generality claimed.

Solution 5.3: Note that {ω ∈ Ω : |f(ω)| > a} = ∪∞n=1{ω ∈ Ω : |f(ω)| > a + (1/n)}, and if the sets
on the right are all null, then so is the set on the left.

Solution 5.4: From the notion of convergence for sequences of real numbers, we have

{lim
n

gn = g} = ∩∞m=1 ∪∞k=1 ∩∞n=k{|gn − g| ≤ 1/m} = ∩∞m=1C(m) ,

where C(m) := ∪∞k=1Bk(m) , Bk(m) := ∩∞n=k{|gn−g| ≤ 1/m} . Now observe that limn gn = g , µ−a.e.
⇔ µ ((C(m))c) = 0 , ∀m ∈ N ⇔ µ (∩∞k=1(Bk(m))c) = 0 , ∀m ∈ N , which in turn is equivalent to
limk→∞ µ

(∪∞n=k{|gn − g| > 1
m}

)
= 0 , ∀m ∈ N . This is because the sequence of sets {(Bk(m))c}k∈N

is decreasing, and the measure µ is finite; recall Exercise 2.2. (If the measure space is not finite but
|gn| ≤ f holds for all n ∈ N for some f ∈ L1(µ) , then µ(|gn−g| > 1/m) ≤ mI(|gn−g|) ≤ 2mI(f) <

∞ hold for every n ∈ N , and the same argument applies.)
Thus, for any given δ > 0 , m ∈ N , there exists Nm ∈ N such that µ ((Bk(m))c) < δ 2−m , ∀ k ≥

Nm ; set
E := ∩∞m=1BNm(m) = ∩∞m=1 ∩∞k=Nm

{|gk − g| ≤ 1/m} ,

and observe that µ(Ec) < δ , that supk≥Nm
|gk(ω) − g(ω)| ≤ (1/m) holds for every ω ∈ E , as well

as that µ (|gk − g| > 1/m) ≤ δ holds for every k ≥ Nm .

Solution 5.5 : (i). If we have µ(|gn − g| > ε) → 0, µ(|gn − h| > ε) → 0 as n →∞ for every ε > 0,
where g and h are measurable functions, then

µ(|g − h| > 2ε) ≤ µ(|gn − g| > ε) + µ(|gn − h| > ε) −→ 0 , as n →∞ .

Thus, µ(g 6= h) = µ(|g − h| > 0) = limm→∞ µ(|g − h| > 1/m) = 0 .
Now suppose that µ(Ω) < ∞ and fn → f µ−a.e.; then the indicator function gn := χ{|fn−f |>ε}

is dominated by the integrable function g ≡ 1 , and gn → 0 µ−a.e.. Therefore, µ
(|fn − f | > ε

)
=

I(gn) → 0 by the Dominated Convergence Theorem.

(ii). The function F (x) = x/(1 + x) , x ≥ 0 is strictly increasing and concave with 0 ≤ F (x) ≤
min(1, x) , F (x + y) ≤ F (x) + F (y) . Thus the quantity

ρ(gn, g) =
∫

{|gn−g|>ε}
F (|gn − g|) dµ +

∫

{|gn−g|≤ε}
F (|gn − g|) dµ

dominates
∫
{|gn−g|>ε} F (|gn− g|)dµ ≥ F (ε) ·µ({|gn− g| > ε}) and is dominated by (ε/(1+ ε)) µ(Ω)+

µ({|gn−g| > ε}) ; this shows the stated equivalence. On the other hand, ρ(f, g) = 0 iff f = g , µ−a.e.,
and ρ(f, g) + ρ(g, h) = I (F (|f − g|) + F (|g − h|)) ≥ I (F (|f − g|+ |g − h|)) ≥ I (F (|f − h|) = ρ(f, h) .
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(iii). From the Čebyšev inequality, we have for every ε > 0: µ(|fn−f | > ε) ≤ ε−p ·I(|fn−f |p) −→
0, as n →∞.

(iv). The sequence gn = nχ(0,1/n] converges to g ≡ 0 a.e. with respect to Lebesgue measure λ

on (0, 1] , but I(gn) = n λ(0, 1/n) = 1 , ∀n ∈ N : a.e. convergence does not imply convergence in L1 .
To see that a.e.-convergence does not imply convergence in measure, if the space has in-

finite measure µ(Ω) = ∞, take Ω = [0,∞) with Lebesgue measure λ, and fn(ω) := χ(n,n+1)(ω) −→
f(ω) ≡ 0, ∀ω ∈ Ω, as n → ∞. But λ(|fn − f | > ε) = λ(n, n + 1) = 1, for all n ∈ N and ε > 0, so
convergence in measure fails.

On the other hand, for k ∈ N, j = 0, 1, . . . , 2k − 1, define

gn(ω) ≡ g2k+j(ω) := χ(j2−k,(j+1)2−k](ω) , ω ∈ Ω = (0, 1] , with n = 2k + j .

For instance, with k = 2, we have f4 = χ(0,1/4], f5 = χ(1/4,1/2], f6 = χ(1/2,3/4] and f7 = χ(3/4,1],
corresponding to j = 0, . . . , 3, respectively. Clearly, I(fn) = I(f2k+j) = 2−k for j = 0, . . . , 2k− 1; thus
limn→∞ I(fn) = 0, so that {fn}n∈N converges to zero, both in L1 and in measure (thanks to (iii)).
However, for any given ω ∈ (0, 1), we have fn(ω) = 0 for infinitely many n, as well as fn(ω) = 1 for
infinitely many n, so that µ(fn → 0) = 0 : you can have convergence both in measure and in L1 , but

not a.e.

(v). Choose a subsequence {hk} := {gnk
} ⊆ {gn} so that the set

Ek := {ω ∈ Ω : |hk(ω)− hk+1(ω)| ≥ 2−k} has µ(Ek) ≤ 2−k , ∀ k ∈ N.

Then Fm := ∪∞k=mEk has µ(Fm) ≤ ∑∞
k=m µ(Ek) ≤ ∑∞

k=m 2−k = 2−m+1, and for all k > ` > m,
ω ∈ F c

m:

|h`(ω)− hk(ω)| ≤
k−1∑

j=`

|hj+1(ω)− hj(ω)| ≤
k−1∑

j=`

2−j ≤ 2−m+1 . (10.2)

In other words, the sequence {hk(ω)}k∈N is Cauchy, thus h(ω) := limk→∞ hk(ω) exists in R, for every
ω ∈ F c

m.
Consider F := ∩∞m=1Fm = ∩∞m=1 ∪∞k=m Ek =: lim sup Ek, which satisfies µ(F ) ≤ µ(Fm) ≤ 2−m+1

for all m ∈ N, thus µ(F ) = 0. Therefore, the function g = limk→∞ hk · χF c is well-defined, and
g = limk→∞ hk holds µ−a.e.

Now let k → ∞ in (10.2), to obtain: |h`(ω) − g(ω)| ≤ 2−m+1, for all ` > m, ω ∈ F c
m. In other

words, { |h`(ω) − g(ω)| > 2−m+1} ⊆ Fm, for all ` > m. Given any ε > 0, δ > 0 select m ∈ N so
large that µ(Fm) < δ, ε > 2−m+1; we have then, for every ` > m:

µ(|h` − g| > ε) ≤ µ(|h` − g| > 2−m+1) ≤ µ(Fm) < δ .

In other words, the sequence {h`} converges in measure to g. But then so does the entire sequence
{gn}, since µ(|gn − g| > ε) ≤ µ(|gn − h`| > ε/2) + µ(|h` − g| > ε/2) < δ for n, ` large enough.

(vi). For any ε > 0 , |fn − f | ≤ (ε/2) and |gn − g| ≤ (ε/2) imply |(fn + gn) − (f + g)| ≤ ε , so
that µ ( |(fn + gn)− (f + g)| > ε) ≤ µ ( |fn − f | > ε/2) + µ ( |gn − g| > ε/2) −→ 0 as n →∞ .

♠ On the other hand, for any M > 0 we have

µ ( |f gn − f g| > ε) ≤ µ ( |f gn − f g| > ε , |f | ≤ M ) + µ ( |f | > M )

≤ µ ( |gn − g| > ε/M ) + µ ( |f | > M)
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and thus lim supn µ( |f gn − f g| > ε) ≤ µ( |f | > M) ; letting M →∞ and using the continuity of the
finite measure µ from above (Exercise 2.2), we conclude that limn µ( |f gn−f g| > ε) = 0 . It is shown
similarly that limn µ( |fn g − f g| > ε) = 0 . But now observe

µ ( |(fn − f)(gn − g)| > ε) ≤ µ
( |fn − f | > √

ε
)

+ µ
( |gn − g| > √

ε
) −→ 0 ,

as n → ∞ . In other words (fn − f)(gn − g) −→ 0 in measure, and thus (fn gn − f g) −→ 0 in
measure, in light of the previous result.

• To see how this can fail on a measure space of infinite measure, take Ω = (0,∞) with Lebesgue
measure and set fn(ω) := 1 + (1/n)χ(n,n+1](ω) , gn(ω) := ω for n ∈ N , as well as f(ω) := 1 and
g(ω) := ω . The resulting sequences {fn}n∈N , {gn}n∈N , converge in measure to the functions f and
g, respectively; indeed,

{ |fn − f | > ε } = (n, n + 1) for n ≤ (1/ε) , { |fn − f | > ε } = ∅ for n > (1/ε) .

On the other hand, we have fn(ω)gn(ω) − f(ω)g(ω) = (ω/n) · χ(n,n+1](ω) ≥ χ(n,n+1](ω) , therefore
λ(|fngn − fg| > ε) ≥ λ((n, n + 1]) = 1 for all ε > 0.

♠ If the function ϕ is uniformly continuous, then for every ε > 0 we can find δ > 0, such that
|ϕ(x)− ϕ(y)| ≤ ε holds for every x, y in R with |x− y| ≤ δ . Thus we get µ ( |ϕ(fn)− ϕ(f)| > ε) ≤
µ ( |fn − f | > δ) −→ 0 , as n →∞ .

• If, on the other hand, the ϕ is just continuous, then for every M > 0 and ε > 0 we can find δ > 0
such that |ϕ(x)− ϕ(y)| ≤ ε holds for every x, y in R with |x| ≤ M , |x− y| ≤ δ . Therefore,

µ ( |ϕ(fn)− ϕ(f)| > ε) ≤ µ ( |ϕ(fn)− ϕ(f)| > ε , |f | ≤ M) + µ (|f | > M)

≤ µ ( |fn − f | > δ , |f | ≤ M) + µ (|f | > M) ,

thus lim supn→∞ µ ( |ϕ(fn)− ϕ(f)| > ε) ≤ µ (|f | > M) . We conclude by letting M → ∞ , since
µ(Ω) < ∞ .

♠ Let {fnk
}k∈N be a subsequence of {fn}n∈N , such that limk I(fnk

) = lim infn I(fn) , and find a
further subsequence {fnk`

}`∈N of {fnk
}k∈N that converges to f , µ−a.e. Then by Fatou: I(f) ≤

lim inf` I(fnk`
) = limk I(fnk

) = lim infn I(fn) .

Solution 5.6 : If r = ∞ then p = q · `, and
∫ |f |qdµ ≤ (||f ||∞)q−p · ∫ |f |pdµ, so that

||f ||q ≤
(
||f ||∞

)(q−p)/q

·
(∫

|f |pdµ

)1/q

≤ (||f ||∞)1−` · (||f ||p)` .

If r < ∞, use Hölder’s inequality with conjugate exponents p′ = p/`q, q′ = r/(1− `)q to obtain

∫
|f |q dµ =

∫
|f |`q · |f |(1−`)q dµ ≤

(∫
|f |`q·p′ dµ

)1/p′

·
(∫

|f |(1−`)q·q′ dµ

)1/q′

=

=
(∫

|f |p dµ

)`q/p

·
(∫

|f |r dµ

)(1−`)q/r

= (||f ||p)`q · (||f ||r)(1−`)q .

Now take q−roots, to complete the argument.
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Solution 5.7 : The case q = ∞ is easy:
∫ |f |p dµ ≤ (||f ||∞)p · µ(Ω) . For q < ∞ , the Hölder

inequality gives
∫ |f |p dµ ≤ (∫ |f |pr dµ

)1/r (µ(Ω))1/s , where r = (q/p) , (1/r) + (1/s) = 1 .

Solution 5.8 : Take Ω = (0,∞) with Lebesgue measure and, for 0 < β < α < 1 , define f(x) = x−β

for 0 < x < 1 and f(x) = x−α for x ≥ 1. Then fp is integrable on (1,∞) iff αp > 1 ; and it is
integrable on (0, 1) iff βp < 1 . Thus, fp is integrable on (0,∞) iff (1/α) < p < (1/β) .

We see from this two reasons why f may fail to be in Lp; either |f |p becomes too large very

rapidly near some point, or else it fails to decay sufficiently fast near infinity. In the first case, the
behavior of |f |p becomes worse as p increases (i.e., for p < r, functions in Lp can be locally more
singular than functions in Lr). In the second case, the behavior of |f |p becomes better as p increases
(i.e., for p < r, functions in Lr can be locally more spread-out than functions in Lp).

Solution 5.10 : (i) Let us start by recalling that Hölder’s inequality |I(fg)| ≤ ||f ||p ||g||q holds as
equality iff: α|f |p = β|g|q holds µ−a.e., for some real numbers α , β with α β 6= 0 . In particular, we
have ||Tf || ≤ ||f ||p , with equality if ||f ||p = 0 . If µ(f 6= 0) > 0 and p < ∞ , the above discussion
shows that Hölder’s inequality holds as equality for the function

g∗ := sgn(f) ·
( |f |
||f ||p

)p−1

,

which also satisfies
∫ |g∗|q dµ =

(∫ |f |p dµ
)
/ (||f ||p)p = 1 , whence ||Tf || ≥

∫
fg∗ dµ =

(∫ |f |p dµ
)

/
(||f ||p)p−1 = ||f ||p .

If p = ∞ and µ is semi-finite, we can choose for each ε > 0 a set Fε ⊆ {|f | > ||f ||∞ − ε } with
0 < µ(Fε) < ∞ ; then gε := (sgn(f)/µ(Fε)) · χFε satisfies ||Tf || ≥

∫
fgε dµ =

(∫
Fε
|f | dµ

)
/ µ(Fε) ≥

||f ||∞ − ε , as well as ||gε||1 =
∫ |gε| dµ =

(∫
χFε dµ

)
/µ(Fε) = 1 .

(ii) From Hölder’s inequality, it is clear that N(f) ≤ ||f ||p , so we need to prove the reverse
inequality N(f) ≥ ||f ||p .

If p = ∞, suppose that the set A = {|f | > N(f) + ε} has positive measure for some ε > 0, and
choose B ⊂ A with 0 < µ(B) < ∞. Then for the simple (and vanishing outside a set of finite measure)
function

ĝ := sgn(f) χB / µ(B) we have ||ĝ||1 = 1 and
∫

fĝ dµ =
1

µ(B)

∫
|f | dµ ≥ N(f) + ε ,

contradicting the definition on N(f). Therefore µ(|f | > N(f)+ε ) = 0 , whence also N(f)+ε ≥ ||f ||p ,
holds for all ε > 0 .

If 1 ≤ p < ∞ and in addition µ is σ−finite (we shall deal with this case only), let us write
Ω = ∪∞n=1Ωn for an increasing sequence {Ω}∞n=1 of sets in F with 0 < µ(Ωn) < ∞, and consider a
sequence {ϕn}∞n=1 of simple functions such that limn ϕn = f pointwise and |ϕn| ≤ |f |, ∀n ∈ N. Then
fn := ϕn · χΩn ∈ S0, and limn fn = f pointwise, |fn| ≤ |f | for all n ∈ N. Setting as before

gn := sgn(f)·
( |fn|
||fn||p

)p−1

, we have ||gn||q = 1 ,

∫
|fngn| dµ = ||fn||p and |fn gn| ≤ |fgn| = fgn ,

and by Fatou’s lemma:

||f ||p ≤ lim infn→∞||fn||p = lim infn→∞

∫
|fngn| dµ ≤ lim infn→∞

∫
|fgn| dµ
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= lim infn→∞

∫
fgn dµ ≤ N(f) .

Solution 5.11 : For f ∈ Lp, choose a sequence {fn}∞n=1 of simple functions (e.g., fn =
∑N

n=1 αn χEn

with αn 6= 0 and {En} disjoint) such that |fn| ≤ |f | and fn −→ f , µ−a.e.; recall Exercise 2.6. Then
fn ∈ Lp since p < ∞, |fn − f | ≤ 2|f | ∈ Lp, and fn −→ f in Lp by the Dominated Convergence

Theorem. Moreover,
∑N

n=1 |αn|p µ(En) =
(
||fn||p

)p

< ∞ implies µ(En) < ∞.

Solution 5.12 : Suppose that f is continuous and has compact support; then it is also uniformly
continuous, and limx→0

(
supy∈R |fx(y)− f(y)|) = 0 . But in this case both fx and f are supported

on a common compact set for |x| ≤ 1 , so we also have

lim
x→0

∫

R

|fx(y)− f(y)|p dy = 0 .

For f ∈ Lp(R) and arbitrary ε > 0 , we choose a continuous function g with compact support and
||f − g||p < ε/3 . Then we have also ||fx − gx||p = ||f − g||p < ε/3 , and ||gx − g||p < ε/3 for |x|
sufficiently small, so that we obtain from the triangle inequality

||fx − f ||p ≤ ||fx − gx||p + ||gx − g||p + ||g − f ||p < ε .

Solution 5.13 : For r < p < ∞ we have:
∫

Ω

|f |p dµ =
∫

Ω

|f |r |f |p−r dµ ≤
(
||f ||∞

)p−r

·
∫

Ω

|f |r dµ < ∞ ,

so f ∈ Lp . Also from this: ||f ||p ≤
(
||f ||∞

)1−(r/p)

·
(
||f ||r

)r/p

, and letting p → ∞ we obtain:
lim supp→∞ ||f ||p ≤ ||f ||∞ .

On the other hand, for any a > 0 with µ(|f | > a) > 0 we have from Čebyšev’s inequality:
∫
Ω
|f |p dµ ≥ ap · µ(|f | > a) > 0 , thus ||f ||p ≥ a ·

(
µ(|f | > a)

)1/p

. Sending p → ∞ we obtain
lim infp→∞ ||f ||p ≥ a , and taking supremum over a yields lim infp→∞ ||f ||p ≥ ||f ||∞ .

Solution 5.14 : It is clear that we have: d
du |f + ug|p = d

du

(
(f + ug)2

)p/2 = p g (f + ug)
(
(f +

ug)2
)(p/2)−1 = p (f + ug)g

∣∣f + ug
∣∣p−2 , so that

lim
u→0

1
u

(
|f + ug|p − |f |p

)
= p |f |p−2 f g .

The question is whether we can pass the limit under the integral sign in

F (f + ug)− F (f)
u

=
∫

Ω

|f + ug|p − |f |p
u

dµ .

To see that we can, observe

|f + ug|p = |(1− u)f + u(f + g)|p ≤ (1− u) |f |p + u |f + ug|p , 0 < u ≤ 1

from the convexity of x 7→ |x|p , so that |f +ug|p− |f |p ≤ u
(|f + g|p− |f |p) . A similar argument gives

|f + ug|p − |f |p ≤ u
(|f |p − |f − g|p) , for −1 ≤ u < 0 . Therefore,

|f |p − |f − g|p ≤ 1
u

(
|f + ug|p − |f |p

)
≤ |f + g|p − |f |p , u ∈ [−1, 1] \ {0} .
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The functions f, f ± g are in Lp , so the Dominated Convergence Theorem allows us to conclude.

Solution 5.15 : We shall concentrate on the case 1 < p < 2 , and try to prove (5.8) written in the
form
∫
|f + g|p dµ +

∫
|f − g|p dµ ≥ (A + B)p − (A−B)p , assuming A := ||f ||p ≥ ||g||p =: B (5.8)′

without loss of generality. To see this, observe that for given R ∈ (0, 1] the function

FR(r) := α(r) + β(r)Rp , 0 ≤ r ≤ 1

with α(r) := (1 + r)p−1 + (1 − r)p−1 , β(r) :=
[
(1 + r)p−1 − (1 − r)p−1

]
r1−p , attains its maximum

FR(R) = α(R) + β(R)Rp = (1 + R)p + (1−R)p ar r = R . Therefore, we have

α(r) ·Ap + β(r) ·Bp ≤ (A + B)p + (A−B)p for 0 ≤ r ≤ 1 , 0 < B ≤ A , (10.3)

with equality for r = B/A . In view of this last inequality, to prove (5.8)′ it suffices to show
∫
|f + g|p dµ +

∫
|f − g|p dµ ≥ α(r) ·

∫
|f |p dµ + β(r) ·

∫
|f |p dµ ,

or even (ϕ + γ)p + |ϕ− γ|p ≥ α(r) · ϕp + β(r) · γp for γ > 0 , ϕ > 0 , 0 ≤ r ≤ 1 . But with ϕ ≥ γ ,
this follows from (9.3); whereas with ϕ < γ , the inequality (10.3) gives

(ϕ + γ)p + (γ − ϕ)p ≥ α(r) · γp + β(r) · ϕp ≥ α(r) · ϕp + β(r) · γp ,

because α(r) · ρp + β(r) ≥ α(r) + β(r) · ρp if ρ > 1 ≥ r ≥ 0 .

Once (5.8) has been established, (5.9) follows if one replaces f by f + g, and g by f − g. A similar
argument deals with the case p > 2 .

Solution 5.16 : Let us concentrate on 1 < p < 2 , f ≡ 0 . Take a minimizing sequence {gn} ⊂ G , with
||gn||p ↓ δ as n →∞ . We shall try to show that this is a Cauchy sequence, so that

∣∣ ||gn||p−||g∗||p
∣∣ ≤

||gn − g∗||p → 0 as n →∞ for some g∗ ∈ G ; this will also show ||g∗||p = δ .
To see all this, observe that convexity and the triangle inequality give

δ ≤
∣∣∣
∣∣∣ 1
2

(gn + gm)
∣∣∣
∣∣∣
p
≤ 1

2
(||gn||p + ||gm||p

) −→ δ as n , m →∞ ,

so that ||gn + gm||p → 2 as n , m →∞ .
Suppose for a moment that ||gn − gm||p → 0 as n , m → ∞ fails; in other words, that there

exists an ε > 0 such that ||gn − gm||p ≥ ε holds for infinitely many m and n in N . Back in (5.9) of
Exercise 5.15, this implies

|2δ + ε|p + |2δ − ε|p ≤ 2p+1 δp ,

contradicting the strict convexity of x 7→ |x|p .

Thus {gn} ⊂ G is a Cauchy sequence, that converges to some g∗ ∈ G in Lp . For any g ∈ G ,
0 ≤ u ≤ 1 we have gu := (1− u)g∗ + ug ∈ G by convexity, and the function

u 7→ F (u) :=
∫

Ω

|(1− u)g∗ + ug|p dµ =
(||gu||p

)p
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has F (u) ≥ δ = F (0) . From Exercise 5.14, F (·) is differentiable at u = 0 , and thus F ′(0) =
p

∫
Ω
|g∗|p g∗

(
g − g∗

)
dµ ≥ 0 .

Solution 5.18 : (i) On Ω = [0, 1] with Lebesgue measure λ , look at ξn = nχ(0,1/n) , n ∈ N and
observe that I(ξn) = 1 holds for every n ∈ N , so we have boundedness in L1 . On the other hand,

{ ξn > κ } = ∅ for κ ≥ n , { ξn > κ } = (0, 1/n) for 0 < κ < n ,

thus supn∈N

∫
{ξn>κ} ξn dλ = 1 for every ` ∈ (0,∞) and uniform integrability fails.

(ii) On the same probability space as before, consider now the family of functions fA,n = nχA ,
λ(A) = 1/n2 (A ∈ B([0, 1]), n ∈ N). Clearly, there is no g ∈ L1 with 0 ≤ fA,n ≤ g a.e. for every
(A,n). Yet

{ fA,n > κ } = ∅ for κ ≥ n , { fA,n > κ } = A for 0 < κ < n ,

thus ∫

{fA,n>κ}
fA,n dλ = n · λ(A)χ(κ,∞)(n) = (1/n)χ(κ,∞)(n) ≤ 1

κ
, ∀ (A, n), κ > 0 ,

so sup(A,n)

∫
{fA,n>κ} ξn dλ ≤ (1/κ) → 0 as κ →∞ , and uniform integrability holds.

Solution 6.1 : Let us justify Remark 6.1 first. For any α ∈ A and Eα ∈ Fα , we have π−1
α =

{ω ∈ Ω |ω(α) ∈ Eα} =
∏

β∈A E′
β , where E′

β = Ωβ for β 6= α, and E′
β = Eα for β 6= α. Therefore

C ⊆ R , F = σ(C) ⊆ σ(R) . On the other hand,
∏

α∈A Eα = {ω ∈ Ω |ω(α) ∈ Eα , ∀α ∈ A } =⋂
α∈A π−1(Eα) ∈ σ(C) = F if A is countable, so R ⊆ F and σ(R) ⊆ F .

Returning to Exercise 6.1, we need to show F = σ(C) ⊆ σ(C′) . For any given α ∈ A , the
class Mα := {E ∈ Ωα |π−1

α (E) ∈ σ(C′)} is a σ−algebra that contains Eα ; thus Fα ⊆ Mα , i.e.,
π−1

α (E) ∈ σ(C′) , ∀E ∈ Fα , α ∈ A , or equivalently C ⊆ σ(C′) , which implies F = σ(C) ⊆ σ(C′) . The
second claim follows by the argument used to justify Remark 6.1.

Solution 6.2 : From Exercise 6.1 we have
⊗n

j=1 B(Ωj) = σ(C′) where C′ = {π−1
j (Oj) ; Oj open

in Ωj , 1 ≤ j ≤ n } and π−1
j (Oj) =

∏n
k=1 Ek (with Ek = Ωk, k 6= j and Ek = Oj , j = k) is open in

Ω ; therefore, C′ ⊆ B(Ω) ,
⊗n

j=1 B(Ωj) = σ(C′) ⊆ B(Ω) .
Now let each Ωj have a countable, dense subset Dj , and denote by Sj the countable collection

of rectangles with rational sides, centered at the points of Dj . Then every open rectangle in Ωj is a
(countable) union of rectangles in Sj , so that σ(Sj) = B(Ωj), and thus σ({∏n

j=1 Bj ; Bj ∈ Sj , ∀ j =
1, · · · , n}) =

⊗n
j=1 B(Ωj) from Exercise 6.1. Finally, observe that B(Ω) = σ({∏n

j=1 Bj ; Bj ∈
Sj , ∀ j = 1, · · · , n}) (since

∏d
j=1 Dj is countable and dense in Ω , and the rectangles in Ω are

products of rectangles in the Ωj ’s).

Solution 6.3 : The second part follows directly from Example 6.1, with K(x, y) ≡ g(x − y) and
ν = λ = Lebesgue measure on B(Rd) . For the third part, note that Young’s inequality guarantees that
the convolution (f ∗g)(ξ) is well-defined, for λ−a.e. ξ ∈ Rd , and that we can apply the Tonelli-Fubini
theorems in tandem to justify changing the order of integration in

(f̂ ∗ g)(ξ) =
∫

Rd

e i〈ξ,x〉(f ∗ g)(x) dx =
∫

Rd

e i〈ξ,x〉
(∫

Rd

f(x− y)g(y) dy

)
dx

=
∫

Rd

e i〈ξ,y〉
(∫

Rd

f(x− y) e i〈ξ,x−y〉 dx

)
g(y) dy = f̂(ξ)

∫

Rd

e i〈ξ,y〉g(y) dy = f̂(ξ) ĝ(ξ) .
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More precisely, the applicability of Fubini’s theorem is justified by
∫

Rd

|e i〈ξ,x〉|
(∫

Rd

|f(x− y)| |g(y)| dy

)
dx =

∫

Rd

(∫

Rd

|f(x− y)| dx

)
|g(y)| dy

= ||f ||1
∫

Rd

|g(y)| dy = ||f ||1 · ||g||1 < ∞ ,

itself a consequence of Tonelli’s theorem and the integrability of f and g.

Solution 6.4 : From Tonelli’s theorem we have that
∫
[0,∞)

µ(g > u) dν(u) is equal to

∫

[0,∞)

(∫

Ω

χ(u,∞)(g(ω)) dµ(ω)
)

dν(u) =
∫

Ω

(∫

[0,∞)

χ[0,g(ω)) dν(u)

)
dµ(ω) ,

which is equal to
∫
Ω

(∫
[0,g(ω))

(u) dν(u)
)

dµ(ω) =
∫
Ω

N(g(ω)) dµ(ω) .

Solution 6.5 : We have (Pδ0)(x) = |x| and

(Pµ)(x) =
∫

(−∞,x]

(x− y) dµ(y) +
∫

(x,∞)

(y − x) dµ(y) = xF (x) + 2
∫

(x,∞)

y dµ(y)− x(1− F (x))

since
∫
R

y dµ(y) = 0 . Therefore, for x > 0 the expression

(Pµ−Pδ0

)
(x) = 2

∫

(x,∞)

(y − x) dµ(y) = 2
∫ ∞

x

(1− F (y)) dy ≥ 0

tends to zero as x →∞ ; whereas for x < 0 the expression

(Pµ− Pδ0

)
(x) = 2

∫

(−∞,x]

(x− y) dµ(y) = 2
∫ x

−∞
F (y) dy ≥ 0

tends to zero as x → −∞ . Finally, by Tonelli

∫ ∞

−∞

(Pµ− Pδ0

)
(x) = 2

∫ ∞

0

(∫

(x,∞)

(y − x) dµ(y)

)
dx

+2
∫ 0

−∞

(∫

(−∞,x]

(x− y) dµ(y)

)
dx =

∫

R

y2 dµ(y) .

Solution 6.6 : It is clear that we can assume I(F (g)) < ∞ . If (6.12) holds for the pair (f, g) ,
then it holds also for (f ∧ n, g) , for each n > 0 ; and if we can establish (6.13) for each of these latter
pairs, then we have established it also for (f, g) , by letting n → ∞ and appealing to the Monotone
Convergence Theorem. Thus, without loss of generality, we may assume I(F (f)) < ∞ as well.

Pick γ > 0 such that F (x/β) ≥ γ F (x) holds for every x > 0 , and integrate both sides of (6.9)
with respect to dF (λ) ; from the Tonelli-Fubini theorems (recall also Exercise 6.4), this gives

ψ(δ) · I(F (f)) ≥
∫ ∞

0

µ

(
g

δ
≤ λ <

f

β

)
dF (λ) = I

((
F (f/β)− F (g/δ)

)+
)

≥ I (F (f/β))− I (F (g/δ)) ≥ γ · I (F (f))− I (F (g/δ)) ;
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thus (γ − ψ(δ)) · I (F (f)) ≤ I (F (g/δ)) . If we select δ ∈ (0, 1) so small, that γ − ψ(δ) > (γ/2) , and
then pick ζ > 0 so that F (x/δ) ≤ ζ · F (x) holds for every x > 0 , then we obtain (γ/2) · I (F (f)) ≤
ζ · I (F (g/δ)) ; this is (6.13) with C = (2ζ)/γ , independent of f and g.

Solution 6.7 : Take Ω1 = Ω2 = R endowed with the σ-algebra L of Lebesgue-measurable sets, and
with the (completed) Lebesgue measure λ̄ ; fix a ∈ R and a non-Lebesgue-measurable set Ξ /∈ L ; recall
(4.3) and Proposition A.1, Appendix A. Now set E1 = {a}, E2 = Ξ , E = E1×E2 ; then E is a subset
of {a}×R which has zero (λ̄⊗ λ̄)−measure. But E does not belong to the product σ-algebra, because
its section Eω1 = Ξ at ω1 = a is not (Lebesgue-) measurable.

To remedy this situation as indicated, proceed as follows. Take an F̄−measurable function f :
Ω → R with f = 0, µ̄−a.e.; argue that its sections fω1 , fω2 are integrable and

∫
Ω2

fω1 dµ2 =∫
Ω1

fω2 dµ1 = 0 , for µ1−a.e. ω1 , µ2−a.e. ω2 (here the completeness of the component spaces is
crucial). Now use Exercise 3.6.

Solution 6.8 : We shall discuss the one-dimensional case d = 1 only. Let us start by observing that∫
ϕε(x) dx = 1 , which implies

(
f ∗ ϕε

)
(x)− f(x) =

∫ [
f(x− y)− f(x)

]
ϕε(y) dy =

∫ [
f(x− εy)− f(x)

]
ϕ(y) dy .

(i) Recalling Exercise 5.12 and its notation, along with the Minkowski inequality for integrals (Propo-
sition 6.2), we obtain:

∣∣∣∣(f ∗ ϕε) − f
∣∣∣∣

p
≤

∫ ∣∣∣∣f−εy − f
∣∣∣∣

p
|ϕ(y)| dy −→ 0 as ε ↓ 0

by Dominated Convergence, because
∣∣∣∣f−εy − f

∣∣∣∣
p
≤ 2

∣∣∣∣f
∣∣∣∣

p
< ∞ and

∣∣∣∣f−εy − f
∣∣∣∣

p
−→ 0 as ε ↓ 0 ,

for each y ∈ R .
(ii) For f ∈ L∞(R) uniformly continuous on a set B , and for any given δ > 0 , let us select a bounded
set F so that

∫
R\F |ϕ(x)| dx < δ ; then

sup
x∈B

∣∣(f ∗ ϕε)(x) − f(x)
∣∣ ≤ 2δ ||f ||∞ + sup

x∈B, y∈F

∣∣f(x− εy)− f(x)
∣∣ ·

∫

F

|ϕ(y)| dy −→ 2δ ||f ||∞

as ε ↓ 0 , and the result follows from the arbitrariness of δ > 0 .
(iii) For every ϕ ∈ C∞↓ (R) and bounded F ⊂ R , we have

sup
x∈F

∣∣(Dmϕ
)
(x− y)

∣∣ ≤ Cm,F

(
1 + |y| )−2

, y ∈ R ,

for every m ∈ N0 . The function y 7→ (
1 + |y| )−2 is in Lq(R) , where (1/p) + (1/q) = 1 , and thus

the integral [
f ∗ (

Dmϕ
)]

(x) =
∫

R

(
Dmϕ

)
(x− y) f(y) dy

converges absolutely and uniformly on bounded sets. Then from Exercise 5.9(ii) we can exchange
differentiation and integration, and arrive at (6.14).

Solution 6.9 : Choose ϕ ∈ C∞∗ (R) with
∫

ϕ(x) dx = 1 , and introduce the functions ϕε as in
Exercise 6.8, for ε > 0 . If f ∈ Lp(R) has compact support, then so does (f ∗ ϕε) (Exercise 6.3(i)),
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and we know from Exercise 6.8 that (f ∗ϕε) ∈ C∞(R) . In other words, (f ∗ϕε) ∈ C∞∗ (R) , and from
Exercise 6.8 we deduce that

∣∣∣∣(f ∗ ϕε) − f
∣∣∣∣

p
−→ 0 , as ε ↓ 0 . But the set of functions f ∈ Lp(R)

with compact support is dense in Lp(R) , and this completes the argument.

Solution 7.1 : Set Zn := X − Xn for n ∈ N ; since
∫

Zn dλ = µ(Ω) − µn(Ω) = 0 , we have
µ(E)− µn(E) =

∫
E

Zn dλ = − ∫
Ec Zn dλ as well as

2
∣∣µ(E)− µn(E)

∣∣ = 2
∣∣∣
∫

E

Zn dλ
∣∣∣ =

∣∣∣
∫

E

Zn dλ
∣∣∣ +

∣∣∣
∫

Ec

Zn dλ
∣∣∣ ≤

∫
|Zn| dλ = 2

∫
Z+

n dλ

for any E ∈ F , with equality for E = {Zn ≥ 0} . This means

2
∣∣∣∣µn − µ

∣∣∣∣ =
∫
|Zn| dλ = 2

∫
Z+

n dλ .

Now 0 ≤ Z+
n ≤ X and Z+

n → 0 hold λ−a.e., which implies
∫

Z+
n dλ −→ 0 as n → ∞ , by the

Dominated Convergence Theorem.

Solution 7.3: Assume µ << ν, let X = dµ/dν and denote integration with respect to ν by I. Then,
using the identity in (7.7), it suffices to show 2 I(X log X ) ≥ (

I(|X − 1|))2 .
Define Y = X − 1 , and observe the elementary inequality

(1 + y) · log(1 + y) ≥ y +
y2

2
1

1 + (y/3)
, for y ≥ −1 .

In conjunction with the simple observation I(Y ) = 0 this gives

2 I(X log X ) = 2 I
(

(1 + Y ) · log(1 + Y )− Y
)
≥ I

(
Y 2

1 + (Y/3)

)

and from Cauchy-Schwarz we see that I
(

Y 2

1+(Y/3)

)
= I

(
Y 2

1+(Y/3)

)
· I (1 + (Y/3)) dominates

(
I

(
|Y |√

1 + (Y/3)
·
√

1 + (Y/3)

))2

=
(
I(|X − 1|)

)2

.

Solution 7.4 : Note H(µα|ν) =
∫

ξα

(
log(ξα)

)+
dν =

∫
f(ξα) dν where ξα := dµα/dν and f(x) :=

x
(
log x

)+ . The result follows from Exercise 5.17 (ii).

Solution 7.5: (Atar & Zeitouni (1997)) There is nothing to prove if λ and µ are not comparable;
so let us assume they are, and set

B := {B ∈ F |λ(B) ≥ µ(B) > 0 } , C := {C ∈ F |λ(C) < µ(C) } .

Note that B is nonempty, and that if C is empty then µ = λ and once again there is nothing to prove.
Thus we take B 6= ∅ , C 6= ∅ from now on, and note

1 ≤ λ(B)
µ(B)

≤ λ(B)
µ(B)

· µ(C)
λ(C)

≤ eh(λ,µ) , ∀ B ∈ B , C ∈ C .
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This implies
0 ≤ λ(B)− µ(B) ≤ µ(B)

(
eh(λ,µ) − 1

)
, ∀ B ∈ B

0 < µ(C)− λ(C) ≤ λ(C)
(
eh(λ,µ) − 1

)
, ∀ C ∈ C

and
2 · ||λ− µ|| = sup

B∈B

[ (
λ(B)− µ(B)

) ∨ (
µ(Bc)− λ(Bc)

) ]
≤ eh(λ,µ) − 1 .

Solution 7.7: Take ε = 1 in the definition of absolute continuity, and let N be the greatest integer
not exceeding 1 + (b− a)/δ , For any division a = x0 < x1 < · · · < xn = b , we can collect (by inserting
more subdivision points, if necessary) the intervals (xi−1, xi) into at most N groups of consecutive
intervals, whose lengths sum up to at most δ in each group. Then the sum

∑
i |f(xi)− f(xi−1)| is at

most one over each group, so the total variation of f on [a, b] is at most N .

Solution 8.1: Write Ω = ∪∞n=1En for some increasing sequence {En} ⊆ F with 0 < µ(En) < ∞,
and identify Lr

n(µ) ≡ Lr(En, µ) with the set of functions in Lr(µ) ≡ Lr(Ω, µ) which vanish outside
the set En. From (8.5), there exists for each n ∈ N a function fn ∈ Lp

n(µ) with Φ(g) =
∫
Ω

fng dµ,
∀ g ∈ Lq

n(µ) and ||fn||p =
∣∣∣∣Φ

∣∣
Lq

n(µ)

∣∣∣∣ ≤ ||Φ|| < ∞.

This fn is unique modulo µ−a.e. equivalence, so fn = fm holds µ−a.e. on En for m > n, and
we can define f : Ω → R consistently by setting f := fn on En. We have then ||f ||p = limn ||fn||p ≤
||Φ|| < ∞ by monotone convergence, and gn := g χEn −→ g in Lq(µ) by dominated convergence for
every g ∈ Lq(µ). It follows that

Φ(g) = lim
n

Φ(g χEn) = lim
n

∫

Ω

fng dµ = lim
n

∫

Ω

fgn dµ =
∫

Ω

fg dµ .

Solution 8.3: (i) The first comparison is clear. The rather obvious set inclusion {|f + g| > 2u} ⊆
{|f | > u} ∪ {|g| > u} leads to the second comparison. And integrating |f |p =

∫∞
0

χ{|f |p>ξ} dξ with
respect to µ , gives

∫

Ω

|f |p dµ =
∫ ∞

0

µ (|f |p > ξ) dξ = p

∫ ∞

0

up−1 λf (u) du

with the help of Tonelli and the change of variable ξ = up .
(ii) For α 6= 0 we have λαf (u) = λf (u/|α|) , which leads to the first claim. The second is an easy

consequence of the comparisons

sup
u>0

(
(2u)pλf+g(2u)

) ≤ 2p · sup
u>0

(
up

(
λf (u) + λg(u)

)) ≤ 2p ·
(

sup
u>0

(
upλf (u)

)
+ sup

u>0

(
upλg(u)

))
.

The comparisoon [f ]p ≤ ||f ||p is a direct consequence of the Čebyšev inequality.

Solution 9.1: The idea is to apply the Recurrence Theorem 9.1 to all powers of T . Fix an arbitrary
k ∈ N and let Fk be the set of points in E that never return to E under successive actions of T k ;
by Theorem 9.1 we have µ(Fk) = 0 . Now for every ω ∈ E \ (F1 ∪ F2 ∪ · · ·) we have T k(ω) ∈ E for
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some k ∈ N , since ω ∈ E \F1 ; as well as T km(ω) ∈ E for some m ∈ N , since ω ∈ E \Fk . It remains
to repeat inductively this (already twice repeated) argument.

To prove (9.1) for a.e. ω ∈ {f > 0} , consider the set Ek = {ω ∈ Ω | f(ω) > 1/k} . The Recurrence
Theorem 9.1 implies that for a.e. ω ∈ Ek we have: T j(ω) ∈ Ek for infinitely many j ∈ N , thus∑

j∈N f(T j(ω)) = ∞ . Therefore, this property holds for a.e. ω ∈ ∪kEk = {f > 0} .

Solution 9.2: (ii) If there are no non-constant invariant functions, it is clear (just by considering
indicator functions) that there cannot possibly be any non-trivial invariant sets – and thus that T is
ergodic.

Now suppose that T is ergodic and that f : Ω → R is measurable and invariant, and try to show
that f is constant a.e. If Cn,k = {k2−n ≤ f < (k + 1)2−n} , then the invariance of f implies that of
Cn,k ; and, for each n ∈ N , the ergodicity of T now gives µ(Cn,k) = 0 for all but one k ∈ N . Now
take the intersection (over n) of all the ‘large’ ones among the sets Cn,k .

Solution 9.3: This T is clearly measure-preserving. If c is a root of unity, then f(ω) = ωn is
measurable, T−invariant and non-constant.

If c is not a root of unity, then the mappings ω 7→ f(ω) = ωn , n ∈ Z form a complete orthonormal
system in L2 . Thus every f ∈ L2 can be written as f =

∑
n∈Z an fn , where the series is understood

to converge in L2 . With (Uf)(ω) := f(T (ω)) we observe Ufn = cn fn , and so Ufn =
∑

n∈Z an cnfn .
Now if f is invariant we must have an = an cn for all integers, thus an = 0 for all n 6= 0 , and
consequently f ≡ a0 . In other words, every invariant function in L2 is a constant, so T is ergodic.

Solution 9.4: Let f : Ω → R be square-integrable; then the Fourier series
∑

n∈Z cn e 2πinω with∑
n∈Z |cn|2 < ∞ of f(ω) converges in L2 , and because T is measure-preserving we have

cn =
∫

Ω

f(ω) e 2πinω dω =
∫

Ω

f(T (ω)) e 2πinT (ω) dω = e 2πinξ

∫

Ω

f(T (ω)) e 2πinT (ω) dω

= e 2πinξ

∫

Ω

f(ω) e 2πinω dω = cn · e 2πinξ , ∀ n ∈ N .

If ξ is irrational, then we have e 2πinξ 6= 1 , so cn = 0 , for every n ∈ N ; thus f is then a.e. equal to
a constant, and T is ergodic by Exercise 9.2(iii).

If ξ = k/m for integers k and m, then the set A = ∪2m−1
k=0 {ω ∈ Ω : k/(2m) ≤ ω < (k + 1)/(2m)}

is clearly invariant, but has Lebesgue measure 1/2.

Solution 9.6: (a) With A ∈ I , that is, T−1A = A mod. µ , we have T−kA = A mod. µ , thus
µ(A ∩ T−kA) = µ(A) , for every k ∈ N . Therefore, taking B = A in the weak mixing property (9.6),
we obtain µ(A) = µ2(A) , so µ(A) = 0 or 1. In other words, T is ergodic.
• If T is ergodic, then Corollary 9.1 applied to f = χB , B ∈ F gives limn→∞(1/n)

∑n−1
k=0 χT−kB =

µ(B) a.e. Integrate both sides over A ∈ F and use the dominated (or even bounded) convergence
theorem, to obtain (9.6).

(b) Let us assume that T is ergodic, and try to show (9.7) (the other implication is now easy). Because
T is measure-preserving, the mapping ϕ 7→ ϕ ◦ T is an isometry on L2(µ) , and for given f ∈ L2(µ)
the set of averages {(1/n)

∑n−1
k=0 f ◦ Tn}n∈N belongs to a closed ball in this Hilbert space. Such a ball

is compact in the weak topology of the space, so the above sequence of averages will converge weakly in
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the space (i.e., (9.7) will hold for any g ∈ L2(µ) ) once it has been established that the set in question
has a unique limit point.

Any such limit point, however, is a T -invariant function, thus constant by ergodicity. Since

lim
n→∞

1
n

n−1∑

k=0

∫

Ω

f(Tn(ω)) dµ(ω) =
∫

Ω

f(ω) dµ(ω) ,

this constant must be
∫
Ω

f(ω) dµ(ω) .
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