1.10. SOLUTIONS TO SELECTED EXERCISES

Solution 1.7: Take 2 = R with its Borel sets, fo = X{a}, and note that sup,cp fo = X is not
Borel-measurable, if E is not a Borel set (recall Remark 1.3, last sentence).

Solution 1.10: (i). If ¢ =0 there is nothing to prove; if ¢ > 0 we have
{cf>a} ={weQlef(w) >a} ={weQ|f(w) >alc} € F,

and the case ¢ < 0 is similar.

(ii). If a >0, we have {f2>a}={f>Vau{f<—Va}eF;if a<0,then {f2>a}=0Q.
(i11). For every rational number o € Q we have C, := {f > o} N{g > a — o} € F. Now observe
that we have {f+g>a}={f>a—g} = UpeqC, € F.

(iv). Follows from parts (i)-(iii) and fg=1 [(f+9)? — (f —9)?].

(v). For every o >0 we have {|f|>a} ={f>a}U{f <—a}eF;if a <0, then {|f| >a}=0Q.
(vi). Observe fT =21 (f+|f]), f~ =3 (|f| — f) and use parts (i), (iii) and (v).

Solution 2.1:  [[f[Pdu > [s5, [fIPdu > a? - p(|f] > a).

Now {f # 0} = Ui {|f] = 1/n} and u(|f| = 1/n) < nP - I(|f[P) < oo if I([f|") < oo, s0 {f # 0}
is o—finite.

Solution 2.2: Without loss of generality, assume m = 1 and write E; \ Fpo = U2, F), for the
pairwise-disjoint sets Foo = N, E,, and Fy, = E;\ Ex+1 (k € N). Now repeat the argument of (2.8).

Solution 2.3: (i). If f= Z;n:l ajxg; is simple, then obviously I(f) =0 < o;u(E;) =0, Vj =
1,---,m & f =0, p—ae. For a general f € L™ with u(f #0) =0, we have also ¢ =0, pu—a.e. for
every simple ¢ with 0 < ¢ < f, thus I(f) =0 from (1.3).

If I(f) = 0, then F, := {f > 1/n}, n € N defines a sequence of sets which increase to
F:={f >0}, with I(f) > I(fxr,) > (1/n) - u(F,) > 0 for every n € N. Thus u(F,,) =0, and (2.5)
gives u(F) =0.

(iv) We have E = N2 E,, where E, := {f > n}, n € N defines now a decreasing sequence
with n - pu(E,) < I(fxg,) < I(f) < co. From this and (2.15), we conclude p(E) = lim,, u(E,) = 0.
On the other hand, we have F' = U2, F,, in the notation of (i), and u(F,) < nlI(f) < co for every
n € N.

Solution 2.3: (vi). It is clear that v is a measure for f simple. Otherwise, consider an increasing
sequence {g,} C S of simple functions with the property (2.12), and note v, (E) = [pgndp 1
fEfdu = v(FE), by the Monotone Convergence Theorem. Take disjoint sets {Gp}nen € F, let
G = U2 G, , observe

M [eS) 00

> v(Gy) <Y vn(Gy) = va(G) < D v(Gy), YneN

j=1 j=1 j=1
and let n — oo to obtain Z]Ail v(Gy) <v(G) < 372, v(Gj), for all M € N. Now let M — oo,
and countable additivity follows.



The property [gdv = [ fgdu is obvious, if ¢ is simple. If not, recall

/gdv = sup /sodv = sup /@fdu < sup /@bdu = /fgdu
£ ofe2, peLs

0<e<g 0<y<fg

from (41); on the other hand, [gdv > [gdv, = [ f,gdu holds for every n € N thanks to (v) and
the fact that f,, is simple, so that [ gdv > [ fgdu follows, by Monotone Convergence.

Solution 2.4: (i75). For the implication (<) in the first equivalence, note

|1 (fxe)—I(gxe)| < |[I((f—9)-x)| < I(f-gl), VEEF.

For the reverse implication (=) in this equivalence, take successively E = {f > g}, E={f < g} to
obtain I(|f —gl) =I((f—9) X{r>gy) +1((9— ) Xir<g}) =0, thanks to Exercise 2.3(i).

(iv) Consider the measurable functions gm = Y0 fo, hm = >0 [fal T Dovey |ful =t R
with |gm| < hpm < h for all m € N. From Exercise 2.3(ii),(iv) we have I(h) = I (> 2 |fal) =
Yoo I(Jfn]) < oo and the set E = {h = oo} has p(E) = 0. Thus the function g(w) :=
limy, oo gm(w), w € E¢ and g(w) := 0, w € E satisfies I(g) = limy,—o0 I(gm), Or equiva-
lently I(ZZO:1 fn) = hmm—on(anzl fn) = limpy, o0 Zzlzlj(fn) = Zlef(fn) by Dominated
Convergence.

Solution 2.5: For (i), observe liminf, E,, = Up>1 Ng>n Ex = Up>1F,, with F, := N> Bk, n >1
an increasing sequence. Therefore,

p(liminf E,) = p (U2, Fy,) = limp(F,) < liminf u(E,),

using the continuity from below property (2.5). Similarly for (ii), using the continuity from above
property (2.15).

As for (iii), Y02, u(E,) < oo implies p(US2,E,) < oo, and using continuity from above along
with subadditivity, one gets:

p(limsup E,,) = lim p (U32,, EBx) < limZu(Ek) =0.

k=n

Solution 2.6:  Just apply (2.12) to obtain increasing sequences {gf@i)} of simple functions, with

0 < ggi) <... gr(Li) — f* pointwise; then verify that ¢, := g,(f) - gr(l_) have the desired properties.

Solution 1.9: (ii). If g=ho f forsome h: R — R, then g~ Y(E) = f~}(h~1(E)) = f~1(B) for
B :=h"Y(E) € B(R), for arbitrary E € B(R). In other words, {¢g7'(E); E€ BR)} C {f~'(B); B¢
BR)}, or alg) C (/).

Now start by assuming o(g) C o(f). Suppose first that ¢ is simple, i.e., g = Z;n:l a; xg; with
{a;}7L, C R, and {E;}7, C F disjoint with Q as their union. We have that E; € o(g) C o(f) =
J7H(B(R)) is then of the form E; = f~'(B;) for some B; € B(R)), j =1,---,m, thus g(w) =
Yoo ai X1y (W) = 251 aj xB; (f(w)) = h(f(w)), where the simple function h:=37"" a; x5, is
B(R)—measurable. For Borel-measurable g : R — [0, 00) , take a sequence of simple, o(f)—measurable
functions {g,}nen increasing to g pointwise, with g, = h, o f for some simple, Borel-measurable
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hn : R — [0,00); now let h := limsup,, h, and observe that g = lim,, g, = lim,(h, o f) = ho f.
Finally, decompose an arbitrary Borel-measurable g : R — R as g = ¢g© — g~ , and repeat the above
procedure to each of g+ .

Solution 3.1: For any D € G, FE € G, we have DU E € £. Indeed, the complement of
E can be written as a finite union FE°¢ = Ul Fj of pairwise-disjoint sets {Fj}?zl C G; thus
D\E =Uj_(DNF;),and DUE = (D\E)UE =EU ( (DN F})) is a finite union of disjoint sets
in G. By induction, it is seen that for any {Ex};"; C G, the union U}’ , E} can be written as a finite
disjoint union of sets from G, and thus belongs to £. It follows that £ is closed under finite unions.
To see that &£ is also closed under complementation, take {E,}7" , € G with Ef = Ul F) ,gj ) a finite

union of disjoint subsets from G, for each k = 1,---,m; then (U} E/ ) =N, ( ;-L:lF,gj)) =

U{Fl(jl) U---u FT(,{”‘) i1, 5 dm = 1,-+-,n} is a disjoint union of sets from G, therefore belongs to
E.

Solution 3.4: (i). The class G of null sets is closed under countable unions, and thus so is F;
indeed, if {E,} CF, {4,} € G and F,, C A, for every n € N, then U,(E, UF,) = EUF, where
FE:=U,FE,€F and F :=U,F, CU,A, €G.

Now F is also closed under complementation; to see this, take EUF € F with E € F, F C
A€ G, assume ENA = ( (otherwise, replace F', A by F\E, A\ E) and write (EUZF)® =
(EUA)YXU(A\F) € F, because A\ F € N'. Thus F is a o-algebra.

If E=FEUF, with E; € F;, F; CA; € G (i = 1,2), then u(E1) < u(E2) + u(Az) = u(Es);
similarly, u(Fs) < u(E1), thus fi is well-defined on F . It is checked easily that ji agrees with u on F.
To verify that i is countably additive, take a sequence {E, U F,},en of pairwise-disjoint sets with
E,eF,F,CA,€G, E,NA, =0 and observe i (US2,(E, UF,)) =pu (U E,) =" w(E,) =
S (B, UF,). Clearly, N C F, so [ is a complete measure on F .

Suppose v is another measure on F that agrees with  on F. To prove v = ji, consider arbitrary
EeF, FCAeG and observe

W(E) = W(E) < WEUF) < l(EUA) = f(EUA) < u(E) + () = u(E),
thus (EUF) = p(F) and v =[.

Solution 3.5: (i). If p*(E) =0, we have by monotonicity pu*(ANE) =0 as well, for every A C Q,
and thus p*(A) > p*(ANE®) = p*(ANE) 4+ p* (AN E°). In other words E € M, and the restriction
of u* to M is a complete measure.

Solution 3.6: (i). For any given B € B(R) we have by assumption A:={g€ B, f#g} C{f #
g} € N C F,since the space is complete. Thus {f =g} € F,and {g€ B} ={f € B, f=g}UA € F,
since f is measurable.

Solution 3.7: Clearly £ C M :=m(€) C 0(€); and in order to show the reverse inclusion ¢(£) C M,
it suffices to prove that M is a c—algebra. Indeed, as we shall see below, for any F € M, G € M
the sets

F\G, G\F, FNG belong to M, (10.1)

and because 2 € £ we deduce that M is an algebra. Now, for any {E,}n,en, the sets F,, :=
U?ZlEj, n € N belong to M, and UjenFE; = Upent, = lim, 1,F, € M, so M is indeed a
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o—algebra. To see the property (x), fix an arbitrary G € M and consider the class C(G) := {F €
M (10.1) holds }. This contains () and G, is a monotone class, and F € C(G) implies G € C(F).
Also, for G € £, we have F € £ = F € C(G) (because £ is an algebra), thus & C C(G) and
M C C(G); in other words, &€ C M C NgeeC(G). In other words, for every G € M we have:
G eC(F), VF € £, which implies F € C(G), YF € £, which implies £ C C(G), which implies
M C C(G) because C(G) is a monotone class. We conclude that M = C(G).

Solution 3.8:  (i). If D is both a m—system and a A—system, then it is closed under complementation
and finite unions. Indeed, for every sequence {E, }nen C D we have Ef = Q\E; € D and E1UE, (Efﬁ
Eg)c € D . To show that D is closed also under countable unions, just observe that G,, := U?ZlEj eD
for every integer n and G, T Uj2,E;j =: G, so that G € D as well. The reverse implication is trivial.

The intersection of an arbitrary collection of A—systems is also a A—system; so for any collection
A C F of subsets of 2 we can define A\(A) as the intersection of all A—systems that contain .A. This
is the smallest A—system that contains A, and clearly A C A(A) C o(A).

(ii). Now let us show A(D) = o(D) for any m—system D. In particular, that any A—system which
contains a m—system also contains the c—algebra generated by it.

Thanks to the above discussion we need only show that A := ¢(D) is a m—system; that is, closed
under pairwise intersections. Consider first the class

Ay ={Ae A|[AnBe A, VBeD}.

Because D is a m—system we have D C A;. We also can check that A; is a A—system, because so is
A. Since A is the smallest A\—system that contains D, this shows that A; = A. Next, let us look at
the class

Ay .= {Ace A|[ANBe A, VBe A}

and deduce D C As from A; = A. We also check that As is a A—system, so A, = A and thus A is a
T—system.

(iii). The class € :={FE € F|u(F) =v(F)} is a A—system. Indeed, 2 € £ by assumption; and
if A, Bwith B C A arein £, we have pu(A\ B) = u(A) —u(B) = v(A) —v(B) = v(A\ B) because pu, v
are finite measures (the finiteness assumption is crucial here), so A\ B € £ ; whereas for any increasing
sequence {E,} C & with E := U2 E, € F we have u(E) = lim, T u(E,) = lim, T v(E,) = v(E)
from (2.5), so E € £ . By assumption D C £, and from part (i) we get (D) = A(D) C £, Q.E.D.

Solution 4.1: For the first claim, denote its right-had side by p(E). If E C U, cn(@n,bn), let
Ap 1= bn — an, I8 = (by — Au217%, b, — A, 27%) for k € N, so that

(an,by) = U I1(1k)7 Ec U U I’I(Lk) and Z Bp((an, bn)) = Z ZﬁF(L(zk)) > np(E).

neN neN kEeN neN neN keN

It follows that p(E) > mp(E). For the reverse inequality, given any 6 > 0 we find a sequence
{(an,bp) tnen with E CJ, cn(an,bn) and Y- g ((an, bn)) < Tip(E)+0 from (4.1)', and for each
n €N a (¢, >0 such that F(b, + (n) — F'(bn) < 627" . Then we have E C (J,,cn(@n,bn + () and

ZﬁF((ambn‘l'Cn)) < Z [ﬁF((an>an+62_n] < ZﬁF((ambn])+6 < bp(E)+26,

neN neN neN



and p(E) < up(F) follows.
If U isopen and E C U, clearly fip(F) < fp(U) and Gp(E) < infﬁ%‘g p(U). The reverse

inequality follows from (4.1)’, once we consider every U € O with U D E as a countable union of open

intervals, so that fip(U) <>, cnHp(an,bn)).

. For the third claim, suppose first that E is bounded. If it is also closed (i.e., E = E), then E is
compact and there is nothing to prove. If not, given any ¢ > 0 we can choose U € O, U D E\ E with
7p(U) <tp(E\E)+d. Then K := E\U is compact, K C E and

fip(K) =[p(E)~ip(ENU) = ﬁF(E)_(ﬁF(U)—ﬂF(U\E)) 2 ﬁF(E)—ﬁF(U>+ﬁF(E\E)) > fip(E)—0 I

If F is unbounded, consider E,, := EN(n,n+1). From what has been shown, for every ¢ > 0 and
n € N there exists a compact set K, C E,, with up(K,) > fip(E,)—627". Theset C,, :=J\__, K;

j=—n
is compact, it is contained in F, and we have

p(Ch) > ﬁF< O Ej) —e. Bwt np(F) = lirrbn ﬁF( O Ej), and the result follows.

Solutions 4.5, 4.6: (ii) For a given partition II, the simple functions g := 2?21 M;;X(tj,l,tj] and
= Y M Xy, satisfy g < f < g™ oas well as S(f;101) = I(g") < I(g") = S(f;10). If f
is Riemann-integrable, there exists a nested sequence of partitions {II% with mesh |[TI(F)]| :=

k
maxlgjgn(k) (t‘g ) t( )

}k:eN’
“1) — 0 as k — oo, such that

lim 1(g™) = lim 1(z™) = R(f), where ¢® =g"", g =g"".
Now the limits g := limy . Tg(k) < f < limp_oo | g% =: § exist and are Lebesgue-measurable,
as limits of monotone sequences of simple functions. Thus I(g) = limy_oo T 1(g®) < limp_oo |
I(g®) = I(g), by the Dominated Convergence Theorem. It follows that I(g9) = I(g) = R(f),
thus g = g (= f), A—a.e. Since g (§) are Lebesgue-measurable and (R, L,\) is complete, it follows
from Exercise 3.6 that f is Lebesgue-measurable as well. But then f is Lebesgue-integrable, and
1(f) = I(g) = 1(g) = R()

For the function f = xq, the Darboux sums are S(f;II) =1 and S(f;II) =0 across partitions,
so R(f) =0, R(f) = 1 so the Riemann integral does not exist. On the other hand, Q is clearly
a Borel set (countable union of singletons), so the simple function f = xq is Borel-measurable and

I(f) = MQ) = X eq A{a}) =0.
Solution 4.10:  There exists a compact set K C I with ¢ < A(K); recall the regularity property
(1.9). Then K C U, J; for some {Jy,---,J,} CU enumerated so that A(J;) > A(J2) > --- > A(Jp).
Put Iy :== Jy; for j =2,3,---, select I; :=
Jm does not intersect any Iy,---,1;_1.

m(j) » Where m = m(j) is the smallest index for which

Let L; be the interval with the same center as I; but three times as long. Then either each J; is

one of Iy,---,I; or else J; intersects I; = J, for some £ < k, so that \(J;) < A(Jy) and J; C L;.
Then, with r the largest index j for which I; is defined:

t < MK) < AUy ZA _3-iwj>



Solution 4.11: It suffices to show that lims o %u((:v—&x—l—(ﬂ) = 0 holds for A—a.e. z € A. Define

F, = {.%EA)IHII&LO M((x_67x+5)) > 1}’

5€Q 0 k

a measurable set for each k& € N (justify!). For each € > 0, there exists an open set V with A CV
and p(V) < e (the regularity property of (1.9)). For every x € F}, there exists a rational number
§ > 0 such that (z —d6,z+6) CV and pu((x — 8,2+ 46)) > §/k. Such intervals (z — 6,z + &) cover
F} ; thus, from Exercise 4.7, for any given ¢ < A(F}) there exist finitely many disjoint subintervals
I, -, I. of V with

t< 3> ML) <6k pu(I) < 6k-pu(V) < 6ke.
j=1 j=1

In other words, A(Fy) < 6ke, so A(Fx) = 0 for every kK € N (just let £ | 0), and then let k — oo
to conclude.

Solution 4.14: The second equation clearly follows from the first. If y = pu* — p~ is the signed
measure associated with the function A, and v = v+ — v~ the signed measure associated with the
function B, then both sides of the first equation express the product measure (u ® v) ([O, t}z) .

Indeed, this is very clear for the left-hand side. As for the right-hand side, f(f A(s)dB(s) is the
measure of the upper triangle including the diagonal, whereas f(f B(s—)dA(s) the measure of the lower
triangle excluding the diagonal.

Solution 4.15: The result is true for ®(z) = z and, if it is true for some @, it is also true for
x — x®(z) by the integration-by parts formula. Thus, the formula is true for polynomials. Now
approximate any continuous and continuously differentiable function by polynomials, to get the result.

Solution 4.16: An application of the integration by parts formula to the product of the functions
t = [locs<s (1 + AA(s)) and t— eA“® both right-continuous and of finite variation, shows rather
easily that this product is indeed as solution of the integral equation.

Now suppose that Z(-), Z(-) are solutions of the integral equation; their difference D(:) :=
Z(-) — Z(-) solves the equation D(t) = f(fD(sf)dA(s), 0 <t<oo. With V(¢) denoting the total
variation of A(:) on the interval [0,¢], and M(t) := supy<,<; |D(s)|, we have then |D(t)| < M(t)V (t),

therefore also

t
1
D) < M(t)/ Vis-)dV(s) < M) 5 VA1),  0<t<oo
0
thanks to the integral equation for D(-) and the integration by parts formula of Exercise 4.14. Tterating
this procedure, we obtain

M (t)
n!

1
ID(t)] < ICES

V(e 0<t<oo

/Ot Vi(s—)dV(s) < M(t)-

for every integer n, and deduce D(-) =0.

Solution 4.17: The increase of I'(-) and the inequalities A(T'(u)) > u, T'(A(t)) > ¢ are quite clear.
On the other hand, the set {t > 0| A(t) > u} is the union of the sets {t > 0| A(t) > u + ¢} over
€ > 0, and the right-continuity of I'(-) follows.



Now for I'(u) > t we have A(t) < w; therefore, A(t) < inf{u > 0|T'(u) > t}. To obtain
an inequality in the reverse direction, observe that we have F(A(t + 5)) > t+9 > t, thus also
A(t+6) > inf{u >0|T'(u) > t}, for every 6 > 0. Now recall that A(-) is right-continuous, to deduce
A(t) > inf{u>0|T(u) >t}.

For the choice h(s) = x[0,4(5), the change-of-variable formula reads A(t) = fooo X{r(w)<t} du; but
this is a consequence of the definition of I'(-). By taking differences, the formula is seen to hold also
for indicators of the type x(,; ; and by monotone class arguments, for any h with compact support.
Taking increasing limits gives the validity of the change of variable formula in the generality claimed.

Solution 5.3: Note that {w € Q : |f(w)| > a} =USL {w e Q : |[f(w)| >a+ (1/n)}, and if the sets
on the right are all null, then so is the set on the left.

Solution 5.4: From the notion of convergence for sequences of real numbers, we have
{lim g, = g} = N1 Uity Mlpf{lgn — gl < 1/m} = N5, C(m),

where C(m) := U2 Bi(m), Bi(m) := N2, {|gn—g| < 1/m}. Now observe that lim,, g, =g, p—a.e.
& p((Cm)))=0,VmeN & p(N2,(Br(m))) =0, ¥Ym € N, which in turn is equivalent to
limy oo pt (U221 {lgn — 9| > £}) =0, Vm € N. This is because the sequence of sets {(Bj(m))},en
is decreasing, and the measure p is finite; recall Exercise 2.2. (If the measure space is not finite but
|gn| < f holds for all n € N for some f € L*(u), then u(|g, —g| > 1/m) <mI(lgn—g|) <2mI(f) <
oo hold for every n € N, and the same argument applies.)

Thus, for any given § > 0, m € N, there exists N,,, € N such that u((Bg(m))®) <d§27™, 6 Vk >
Ny, ; set

E:=05_1Bn,, (m)=nx_ My, {lgr — gl < 1/m},

and observe that u(E°) < ¢, that supgsy, [gr(w) —g(w)| < (1/m) holds for every w € E, as well
as that p(|lgr —g| > 1/m) < 4§ holds for every k > N,,.

Solution 5.5 : (i). If we have p(|gn —g| >¢) — 0, p(lgn —h| >¢€) — 0 as n — oo for every € > 0,
where g and h are measurable functions, then

u(lg — bl > 2¢) < pllgn — gl > €) + pllgn —h| >€) — 0, as n —oo.

Thus, pu(g # h) = p(lg — k| > 0) = limp oo p(lg = k| > 1/m) = 0.

Now suppose that p(2) < oo and f, — f p—a.e.; then the indicator function g, := Xx{|f,—f/>e}
is dominated by the integrable function ¢ = 1, and ¢, — 0 p—a.e.. Therefore, ,u(|fn —fl > 5) =
I(gn) — 0 by the Dominated Convergence Theorem.

(ii). The function F(x) ==z/(1+4 z), x > 0 is strictly increasing and concave with 0 < F(z) <
min(l,z), F(z+y) < F(z) + F(y). Thus the quantity
p(gn,9) = / F(lgn — g1) dp +/ F(lgn — gl) dp
{lgn—gl>e} {lgn—gl<e}

dominates f{‘gn_g‘x} F(lgn —gl)dp > F(e) - pu({|lgn — g| > €}) and is dominated by (g/(1+¢)) u(Q)+
w({|gn —g| > €}); this shows the stated equivalence. On the other hand, p(f,g) =0 iff f =g, p—ae.,

and p(f,g)+p(g,h) =1 (F(|f —gl)+ F(lg—nhl) > T(F(f —gl+1g—~hl) = I(F(f - hl)=p(f,h).
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(i7i). From the Cebysev inequality, we have for every € > 0: u(|f, —f| > ¢) < e P-I(|fu—fIP) —

0, as n — oo.

(iv). The sequence g, = nX(0,1/n) converges to g =0 a.e. with respect to Lebesgue measure A
on (0,1], but I(g,) =nA0,1/n) =1, Vn € N: a.e. convergence does not imply convergence in L.

To see that a.e.-convergence does not imply convergence in measure, if the space has in-
finite measure () = oo, take Q = [0, 00) with Lebesgue measure A, and f,,(w) := X(n,nt1)(w) —
flw)=0,Vw e Q,as n — oco. But A(|f, — f| >¢) = AMn,n+1) =1, forall n € N and € > 0, so
convergence in measure fails.

On the other hand, for k € N, j =0,1,...,2% — 1, define

In(w) = goryj(w) := X(j2*k7(j+1)2*"‘}(w> , we=(0,1, with n= 2"+ .

For instance, with k = 2, we have f1 = X(0,1/4, f5 = X/4,1/2, o = X(1/2,3/40 and fr = X(3/4,1],
corresponding to j = 0,...,3, respectively. Clearly, I(fn) = I(for1;) = 2% for j=0,...,2F—1; thus
lim, oo I(fn) = 0, so that {f,}nen converges to zero, both in L' and in measure (thanks to (iii)).
However, for any given w € (0,1), we have f,(w) = 0 for infinitely many n, as well as f,(w) =1 for
infinitely many n, so that u(f, — 0) = 0: you can have convergence both in measure and in L', but

not a.e.

(v). Choose a subsequence {hy} := {gn,} C {gn} so that the set
B = {weQ: |hw) —hipi(w)] >27% has u(Ep) <27%, VkeN.

Then F,, := U2 Ej has u(F,) < > oo, w(By) < >po, 27%F =27m% and for all k > ¢ > m,
we Fy:

k—1

277 < ommHL, (10.2)

(]

k—1
|he(w) = hi(w)] <> |hja(w) = hj(w)] <
=L

j=¢
In other words, the sequence {hj(w)}ren is Cauchy, thus h(w) := limy_  hix(w) exists in R, for every
weFS.

Consider F :=No_1 F,, = N5o_y U2, By, =: limsup Ej, which satisfies p(F) < u(F,,) <2-m*!
for all m € N, thus p(F) = 0. Therefore, the function ¢ = limg_oc hy - xpe is well-defined, and
g = limy_. o, hg holds p—a.e.

Now let k& — oo in (10.2), to obtain: |hy(w) — g(w)| < 27 for all £ > m, w € FS. In other
words, {|h¢(w) —g(w)| > 2™} C F,, for all £ > m. Given any ¢ > 0, § > 0 select m € N so
large that u(F,,) <&, ¢ > 2™+ we have then, for every ¢ > m:

w(lhe =gl > €) < p(lhe — gl > 27" < p(Fp) <9.
In other words, the sequence {h;} converges in measure to g. But then so does the entire sequence

{gn}, since p(|lgn — gl >¢) < pu(lgn — hel > €/2) + p(lhe — g| > €/2) < 6 for n, £ large enough.

(vi). For any € >0, |fo — f| < (¢/2) and |gn — g| < (¢/2) imply [(fn +gn) — (f +9)| < €, s0
that 1 (|(fn+9n) = (f+9)>¢) < pu(lfn—fI1>¢e/2) + u(lgn —9gl>¢/2) — 0 asn —oo.

& On the other hand, for any M > 0 we have

w(lfgn—fgl>e) <pullfgn—Ffol>e, [fI<M) + pu(lf] >M)
p(lgn — gl >e/M) + p(|f] > M)

8
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and thus limsup,, u(|fgn — fgl >€) < p(|f| > M); letting M — oo and using the continuity of the
finite measure p from above (Exercise 2.2), we conclude that lim,, u(|f g, — fg| >¢)=0. It is shown
similarly that lim,, p(|fng— fg| >¢€) =0. But now observe

w([(fo=Fgn =) >¢) < p(lfa—Ff1>Ve) + p(lgn —gl>Ve) — 0,

as n — oo. In other words (f, — f)(gn —g) — 0 in measure, and thus (f, g, — fg) — 0 in
measure, in light of the previous result.

e To see how this can fail on a measure space of infinite measure, take 2 = (0,00) with Lebesgue
measure and set f,(w) := 14 (1/n) X(nnt41](w), gn(w) := w for n € N, as well as f(w) := 1 and
g(w) := w. The resulting sequences {f,}neN, {gn}tnen, converge in measure to the functions f and
g, respectively; indeed,

{Ifa—fl>e} = (nyn+1) for n<(1/e),  {lfa—fl>e} =0 for n>(1/e).
On the other hand, we have f,(w)gn(w) — f(w)g(w) = (W/N) - X(nn+1](W) = X(n,n+1](w), therefore
M| fngn — fg] >¢€) > AM(n,n+1]) =1 for all £ > 0.

& If the function ¢ is uniformly continuous, then for every € > 0 we can find § > 0, such that
lo(x) — ¢(y)| < e holds for every z, y in R with |z —y| <. Thus we get u(|o(fn) —@(f)| >¢) <
p(l|fn—fl>90) — 0,as n— 0.

e If on the other hand, the ¢ is just continuous, then for every M > 0 and £ > 0 we can find § > 0
such that |p(z) — p(y)| < e holds for every x, y in R with || < M, |x —y| <. Therefore,

w(le(fn) =Nl >e) < plle(fn) =Nl >e, [fI < M)+ pu(lf| > M)

< ullfn = f1>6, [fI< M)+ pu(fl> M),

thus limsup,, . 1 (|o(fn) —@(f)] >¢e) < w(|f] > M). We conclude by letting M — oo, since
w(Q) < oo.

& Let {fn, }ren be a subsequence of {f,}nen, such that limy I(f,,) = liminf, I(f,), and find a
further subsequence {fn,, }ren of {fn,}ren that converges to f, p—a.e. Then by Fatou: I(f) <
lim inf, I(fnk[) = limy, I(f,,) = liminf, I(f,).

Solution 5.6 : If r =oco then p=¢q- ¢, and [|f|%u < (||f|lec)? P - [|f|Pdp, so that

17l < (1) (/ lf|pdu)1/q < (11l (11 11)

If r < oo, use Holder’s inequality with conjugate exponents p’ = p/lq, ¢ = r/(1 — £)q to obtain

1/p’ 1/q
Jurman = [igein0-onan < (fiaera) - (fineoeta) -
q/p (1—0)q/r
= (Juwa) " (fraran) T = st e

Now take g—roots, to complete the argument.



Solution 5.7 : The case ¢ = oo is easy: [|f|Pdp < (||f]leo)” - 1(Q). For ¢ < oo, the Holder
inequality gives [ /P di < (f 177 di) " (u()", where 7 = (a/p), (1/r) +(1/8) = 1.

Solution 5.8 : Take 2 = (0,00) with Lebesgue measure and, for 0 < 3 < a < 1, define f(z) =278
for0 <z <1 and f(z) =2 for x > 1. Then fP is integrable on (1,00) iff ap > 1; and it is
integrable on (0,1) iff p < 1. Thus, f? is integrable on (0,00) iff (1/a) <p < (1/5).

We see from this two reasons why f may fail to be in L?; either |f|P becomes too large very
rapidly near some point, or else it fails to decay sufficiently fast near infinity. In the first case, the
behavior of |f|” becomes worse as p increases (i.e., for p < r, functions in LP can be locally more
singular than functions in L"). In the second case, the behavior of |f|P becomes better as p increases
(i.e., for p < r, functions in L" can be locally more spread-out than functions in L?).

Solution 5.10 : (i) Let us start by recalling that Holder’s inequality |I(fg)| < ||fllp|lg||q holds as
equality iff: a|f|? = B|g|? holds p—a.e., for some real numbers «, § with a3 # 0. In particular, we
have ||T¢|| < ||f]lp, with equality if |[f||, = 0. If u(f #0) > 0 and p < oo, the above discussion
shows that Holder’s inequality holds as equality for the function

ey (LY
(i

which also satisfies [ |g.|9dp = ([ [f[Pdu) /(|| f]|p)" = 1, whence ||T¢|| > [ fgedp = ([ |fIPdy) /
(L1177 = 11f 1l

If p=o0c and g is semi-finite, we can choose for each € > 0 aset F. C {|f]| > ||f||lcc — €} with
0 < p(F.) < 05 then g. := (sgn(f)/u(F.)) - xr, satisfies | Tyll > [ fo-du = ([ [Fldn) /u(Fe) =
Iflloc — €, as well as ||gells = [|geldu = ([ xr. du) /u(Fe) = 1.

(ii) From Hélder’s inequality, it is clear that N(f) < ||f||,, so we need to prove the reverse

inequality N(f) > ||/,
If p = oo, suppose that the set A = {|f| > N(f) + ¢} has positive measure for some ¢ > 0, and

choose B C A with 0 < p(B) < oo. Then for the simple (and vanishing outside a set of finite measure)
function

g=sen(f)xs/u(B) wehave [|glh=1 and /f@du - M(lB)/fldu > N(f) +e,

contradicting the definition on N(f). Therefore u(|f| > N(f)+e) =0, whence also N(f)+e > ||f|l,,
holds for all € > 0.

If 1 < p < oo and in addition p is o—finite (we shall deal with this case only), let us write
Q= U2 ,Q, for an increasing sequence {Q}>°; of sets in F with 0 < p(€,) < oo, and consider a
sequence {¢,}o2; of simple functions such that lim,, ¢, = f pointwise and |p,| < |f|, Vn € N. Then
frn=¢nxa, € So,and lim, f, = f pointwise, |f,| <|f| for all n € N. Setting as before

|fnl
[ fallp

and by Fatou’s lemma:

p—1
g = sgn(f)~< ) - wetae llgally =10 [ Ungaldo = 15l and gl <1750l = fon.

1£1l, < Hminfyoo|[foll, = liminf, o / fugn| dpt < liming,, . / Fon dt
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— timinf, oo [ fondu < N().

Solution 5.11 : For f € LP, choose a sequence {f,}°°; of simple functions (e.g., f, = 25:1 an XE,
with «,, # 0 and {E,} disjoint) such that |f,| < |f| and f, — f, p—a.e.; recall Exercise 2.6. Then
fn € LP since p < oo, |fn — f] < 2|f] € LP, and f, — f in L? by the Dominated Convergence

p
Theorem. Moreover, 27]:[:1 | |P w(Ey) = <||fn\|p> < oo implies p(E,) < oo.

Solution 5.12 : Suppose that f is continuous and has compact support; then it is also uniformly
continuous, and lim, o (sup,cg |fz(y) — f(y)]) = 0. But in this case both f, and f are supported
on a common compact set for |z| <1, so we also have

lim /R o) — F@)Pdy = 0.

r—0

For f € LP(R) and arbitrary ¢ > 0, we choose a continuous function ¢g with compact support and
I = gllp < /3. Then we have also [|fz = gall, = [If = gll, < /3, and |[|g. — gll, < &/3 for |z
sufficiently small, so that we obtain from the triangle inequality

1o = Fllp < |lfz = gzllp + 1192 = gllp +[lg = fllp <e-

Solution 5.13 : For r < p < oo we have:

Lusran= [isriseran < (1) [ 11 < oo,

1—(r/p) r/p
so f € L?. Also from this: |[|f][, < (||f||oo) : <Hf||r) , and letting p — oo we obtain:

On the other hand, for any a > 0 with u(|f| > a) > 0 we have from Cebysev’s inequality:

1/
Jo lfIPdp > a? - p(|f| > a) > 0, thus |[f]|, > a- (u(]f| > a)) " Sending p — oo we obtain

liminf, . ||f|l, > a, and taking supremum over a yields liminf, . [|f|l, > ||f]s -
Solution 5.14 : It is clear that we have: -L|f 4+ ug|? = 2L((f+ ug)Q)p/2 = pg(f+ug) ((f+
ug)Q)(p/2)_1 =p(f+ug)g |f + ug‘p_2 , so that
i 1 p p p—2
lim ~ (|f +ugl’ = |f") = pIf"72fg.
u—0 U
The question is whether we can pass the limit under the integral sign in

P+ PU) _ [ rual oY,

u

To see that we can, observe
[f+ugl” = A -uw)f+ulf+ 9" < A=u)[fl" +ulf+ugl’, 0<u<l

from the convexity of z — |z|P, so that |f+ug|? —|f[? < u(|f+g[P —|f|?). A similar argument gives
|f +uglP = |fIP <u(]f]P = |f —g|P), for =1 <u < 0. Therefore,

7 =17 =gl < - (If +uglt —1f1P) < If P~ 177, we [-L1\{0).

11



The functions f, f £ ¢ are in LP, so the Dominated Convergence Theorem allows us to conclude.

Solution 5.15 : We shall concentrate on the case 1 < p < 2, and try to prove (5.8) written in the
form

/|f+g|p dp + /|f —glPdp = (A+B)" = (A= B)?, assuming A:=|[f[[, = [lgll, = B (5.8)’
without loss of generality. To see this, observe that for given R € (0, 1] the function
Fr(r) == o(r) + B(r)R?, 0<r<1

with a(r) == (L+r)P~t+ (1= r)P~t, B(r) := [(14+ 7Pt = (1 —r)P71] r17P attains its maximum
Fr(R) =a(R)+ B(R)R? = (14+ R)? + (1 — R)? ar r = R. Therefore, we have

a(r)- AP + B(r)-B? < (A+B)? + (A—- B)? for 0<r<1,0<B<A, (10.3)

with equality for » = B/A. In view of this last inequality, to prove (5.8)" it suffices to show

t/v+m%m+1/v—gwwuzMﬂ;/vwww+mm~/uwmu

oreven (@4+Y)P+lp—7P > a(r) - +5(r) -4 for v>0, p >0, 0<r<1. But with ¢ >,
this follows from (9.3); whereas with ¢ < 7, the inequality (10.3) gives

@+ NP+ (v =) > alr) AP +8(r)- o > alr)- " +6(r) -7,

because «(r)-pP + B(r) > a(r) +p(r)-pP if p>1>r>0.
Once (5.8) has been established, (5.9) follows if one replaces f by f + g, and g by f —g. A similar
argument deals with the case p > 2.

Solution 5.16 : Let us concentrateon 1 < p < 2, f =0. Take a minimizing sequence {g,} C G, with
lgnllp | & as n — oo. We shall try to show that this is a Cauchy sequence, so that | [|gn|lp —|lgs|[» | <
llgn — g«|lp — 0 as n — oo for some g, € G; this will also show [|g.|[, = ¢.

To see all this, observe that convexity and the triangle inequality give

1 1
6 < || 3@t am) || <5 Ugally +llgmlly) — 6 as mom oo,

so that ||gn + gmll, — 2 as n, m — oo.

Suppose for a moment that ||g, — gm|l[, — 0 as n, m — oo fails; in other words, that there
exists an € > 0 such that ||g, — gm||, > € holds for infinitely many m and n in N. Back in (5.9) of
Exercise 5.15, this implies

120 + [P + |20 —¢]P < 2PTL 6P
contradicting the strict convexity of x +— |z|P.

Thus {g,} C G is a Cauchy sequence, that converges to some ¢, € G in LP. For any g € G,
0<wu<1 wehave g, := (1 —u)g« +ug € G by convexity, and the function

we B = [10-wg. +ugl e = (loall)
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has F(u) > § = F(0). From Exercise 5.14, F(-) is differentiable at u = 0, and thus F’(0) =
P Jo l95P 9+ (9 — g:) dp > 0.

Solution 5.18 : (i) On Q = [0,1] with Lebesgue measure A, look at &, = nx(0,1/n), » € N and
observe that I(£,) =1 holds for every n € N, so we have boundedness in L'. On the other hand,

{&p >k} =0 for K>n, {&. >k} = (0,1/n) for 0<K<m,

thus sup,cn /| (€n>n) &ndX =1 for every £ € (0,00) and uniform integrability fails.

(ii) On the same probability space as before, consider now the family of functions fa, =nxa,
AA) = 1/n% (A € B([0,1]), n € N). Clearly, there is no g € L' with 0 < f4, < g a.e. for every
(A,n). Yet

{fan>rk} =0 for k>n, {fan>rk}=A for 0<kK<n,

thus
1
[ handh = A X (1) = ) Xe@) < ¥ (A k>0,
{fA,n>’i} K
SO SUP(A ) f{fA,n>H} &ndX < (1/k) — 0 as kK — oo, and uniform integrability holds.

Solution 6.1 : Let us justify Remark 6.1 first. For any o € A and E, € F,, we have 7! =
{we Qlw(a) € Eo} = [[gea Ej, where Ej = Qp for B # o, and Ej = E, for 8 # a. Therefore
CC R, F=0C)Co(R). On the other hand, [[,c4 Fo = {w € Q|w(a) € E,, Va € A} =
Naca™ *(Eq) € 0(C) = F if A is countable, so R C F and o(R) C F.

Returning to Exercise 6.1, we need to show F = o¢(C) € o(C’). For any given o € A, the
class My := {E € Q. |7, (E) € o(C')} is a o—algebra that contains &,; thus F, C M,, ie.,
7 Y (E)€o(C'), VE € F,, a € A, or equivalently C C ¢(C’), which implies F = o(C) C o(C’). The
second claim follows by the argument used to justify Remark 6.1.

Solution 6.2 : From Exercise 6.1 we have ®?:1 B(Qj) = o(C") where C' = {7rj_1(0j); O, open
in Q;, 1<j<n} and 7;'(0;) =[[— Ex (with Ex =Q, k#j and E, = O;, j = k) is open in
Q; therefore, C' C B(Q), Q) B() = o(C') € B(Q).

Now let each 2; have a countable, dense subset D;, and denote by S; the countable collection
of rectangles with rational sides, centered at the points of D;. Then every open rectangle in ; is a
(countable) union of rectangles in S;, so that o(S;) = B(£2;), and thus O’({H?Zl B;j;BjeS;,Vj=
L--,n}) = @j_, B(Q;) from Exercise 6.1. Finally, observe that B(Q) = o({[[}-, Bj; B; €
S;j, Vj=1,---,n}) (since H?Il D; is countable and dense in €2, and the rectangles in Q are
products of rectangles in the 2;’s).

Solution 6.3 : The second part follows directly from Example 6.1, with K(z,y) = g(z — y) and
v = A = Lebesgue measure on B(R?). For the third part, note that Young’s inequality guarantees that
the convolution (f*g)(¢) is well-defined, for A—a.e. £ € R%, and that we can apply the Tonelli-Fubini
theorems in tandem to justify changing the order of integration in

Fra© = [ e epae = [ e ([ g ygtay)ao

= / ei<5vy>( flx—y)et&ry) dw) g(y) dy = f(€) / e "W g(y) dy = f(€)G(E).
Rd Rd R
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More precisely, the applicability of Fubini’s theorem is justified by

L ([ e -wlswa)ae = [ ([ 156 -nlae) sl

= 1Al [ ol dy = 11l Il < oc.

itself a consequence of Tonelli’s theorem and the integrability of f and g.

Solution 6.4 : From Tonelli’s theorem we have that f[o 00) w(g > u)dv(u) is equal to

/[0700) </ﬂ X(u,oo)(g(w))du(w)> dv(u) = /Q (/[0700) X[0,9(«)) dv(u)) du(w),

which is equal to [, (f[O,g(w))(u) du(u)) du(w) = [ N(g(w)) du(w).
Solution 6.5 : We have (Pdy)(z) = |z| and

P = [ @opd) ¢ [ @) = @ 42 [ ydat) a0 - F)

(z,00) (x,00)
since [ ydu(y) = 0. Therefore, for 2 > 0 the expression
(Pr=Pa)) =2 -e)duy) =2 [ (0= Fa)ay 20

tends to zero as x — 00 ; whereas for = < 0 the expression

x

(2 — ) duly) = 2/ Fly)dy > 0

— 00

(PM_P(;O)(.f) = 2/

(—OO,J)}

tends to zero as * — —oo. Finally, by Tonelli

/_Z (Pu—Pdo)(z) = 2/000 (/(m’oo)(y —x) d,u(y)) dr

Solution 6.6 : It is clear that we can assume I(F(g)) < oco. If (6.12) holds for the pair (f,g),
then it holds also for (f An,g), for each n > 0; and if we can establish (6.13) for each of these latter
pairs, then we have established it also for (f,g), by letting n — oo and appealing to the Monotone
Convergence Theorem. Thus, without loss of generality, we may assume I(F(f)) < oo as well.

Pick v > 0 such that F(z/3) > v F(x) holds for every = > 0, and integrate both sides of (6.9)
with respect to dF'(X); from the Tonelli-Fubini theorems (recall also Exercise 6.4), this gives

V(8) - I(F(f)) > /Ooo,u <g <A< g) dF(\) =1 ((F(f/ﬁ) —F(9/5))+>

= I(F(f/B) = 1(F(g/6)) =z~ -I(F(f)) = I(F(g/d)) ;
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thus (v —(0)) - I(F(f)) < I(F(g/d)). If we select 6 € (0,1) so small, that v —1(d) > (v/2), and
then pick ¢ > 0 so that F(z/6) < (- F(x) holds for every x > 0, then we obtain (v/2) I (F(f)) <
¢-I(F(g/0)); thisis (6.13) with C' = (2¢)/~, independent of f and g.

Solution 6.7 : Take Q; = Q5 = R endowed with the o-algebra L of Lebesgue-measurable sets, and
with the (completed) Lebesgue measure \; fix a € R and a non-Lebesgue-measurable set = ¢ L ; recall
(4.3) and Proposition A.1, Appendix A. Now set Fy = {a}, F; ==, E = E; x Fy; then FE is a subset
of {a} x R which has zero (A® \)—measure. But E does not belong to the product o-algebra, because
its section F,, =2 at w; = a is not (Lebesgue-) measurable.

To remedy this situation as indicated, proceed as follows. Take an F—measurable function f :
Q — R with f = 0, p—a.e.; argue that its sections f,,, fu, are integrable and sz Sy, duo =
le fu, dpr = 0, for pi—ae. wy, po—a.e. we (here the completeness of the component spaces is
crucial). Now use Exercise 3.6.

Solution 6.8 : We shall discuss the one-dimensional case d =1 only. Let us start by observing that
J ¢e(x) dz = 1, which implies

(f*pe)(x) — flz) = /[f(x—y)—f(ft)}sos(y)dy = /[f(x—ey)—f(w)}sO(y)dy-

(i) Recalling Exercise 5.12 and its notation, along with the Minkowski inequality for integrals (Propo-
sition 6.2), we obtain:

[(f*ee) = fl], < /||f—€y — fll,le@ldy — 0 as €10

by Dominated Convergence, because Hf,sy — pr <2 Hpr < oo and Hf,gy — pr — 0 ase]0,
for each y € R.

(ii) For f € L*°(R) uniformly continuous on a set B, and for any given 6 > 0, let us select a bounded
set F so that fR\F |o(x)| dx < §; then

sup |(f * @) () — f(2)| < 20(|fllc+ sup |f(z—ey) —f(l’)!~/ o)l dy — 26|00
zeB rzeB,ycF F

as € | 0, and the result follows from the arbitrariness of § > 0.
(iii) For every ¢ € C{°(R) and bounded F' C R, we have

81611;|(D%)<$—y)| < Cor(L+ly)%.  yeR,

for every m € Ng. The function y — (1 + [y )_2 is in LY(R), where (1/p)+ (1/q) = 1, and thus
the integral

12 (079 @) = [ (D") =) 1wy

converges absolutely and uniformly on bounded sets. Then from Exercise 5.9(ii) we can exchange
differentiation and integration, and arrive at (6.14).

Solution 6.9 : Choose ¢ € C*(R) with [¢(z)dr = 1, and introduce the functions ¢, as in
Exercise 6.8, for ¢ > 0. If f € LP(R) has compact support, then so does (f * ¢.) (Exercise 6.3(i)),
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and we know from Exercise 6.8 that (f*p.) € C*°(R). In other words, (f*¢.) € C2(R), and from
Exercise 6.8 we deduce that H(f * (g) — pr — 0, as € | 0. But the set of functions f € LP(R)
with compact support is dense in LP(R), and this completes the argument.

Solution 7.1 : Set Z, := X — X,, for n € Nj since [Z,d\ = p(Q) — pun(2) = 0, we have
P(E) = pin(E) = [, Znd\ = — [, ZndX  as well as
/|Zn|d/\ - 2/Z;dA

IN

2|u(E) — pn(E)| = 2)/Ean)\‘ - ‘/Ean)\‘—k‘/can/\)

for any E € F, with equality for £ = {Z, > 0}. This means

2|t — || = /Zn|d)\ = 2/Z;fd)\.

Now 0 < ZF < X and Z} — 0 hold A—a.e., which implies [Z}d\ — 0 as n — oo, by the
Dominated Convergence Theorem.

Solution 7.3: Assume pu << v, let X =du/dv and denote integration with respect to v by I. Then,
using the identity in (7.7), it suffices to show 27(X log X ) > (I(|X — 1|))2.
Define Y = X — 1, and observe the elementary inequality

o
1+ (y/3)"

In conjunction with the simple observation I(Y) =0 this gives

2
(1+y)'10g(1+y)2y+y— for y>—1.
2

2106 e ) = 21( ()t +)-v) = 1 ()

and from Cauchy-Schwarz we see that [ (%) =1 ( ¥ ) - I (14 (Y/3)) dominates

v ey
(I(W- 1+(Y/3)>> _(1(|X 1\)).

Solution 7.4 : Note H(uq|v) = [&, (log(ga))ery = [ f(&)dv where &, := duq/dv and f(z) :=
z (log :U)+ . The result follows from Exercise 5.17 (ii).

Solution 7.5: (Atar & Zeitouni (1997)) There is nothing to prove if A and p are not comparable;
so let us assume they are, and set

B:={BeF|NB)>uB)>0}, C:={CeF|NC)<uC)}.

Note that B is nonempty, and that if C is empty then g = A and once again there is nothing to prove.
Thus we take B# (), C # () from now on, and note

A(B) _ u(C) e
W(B) = wB) MC) T , V BeB,CeC.
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This implies

IN

0 < A(B) — u(B) < u(B) (eh<w - 1) ., YV BeB

0 < u(C)=A0)

IN

A(C) <eh(’\’“) - 1) ., v cCec

and
2 |In = pll = sup [ (A(B) = u(B) v (u(B) = A(B) | < ") 1.

Solution 7.7: Take € =1 in the definition of absolute continuity, and let N be the greatest integer
not exceeding 1+ (b—a)/d, For any division a = 2o < 21 < --- < x, = b, we can collect (by inserting
more subdivision points, if necessary) the intervals (z;_1,x;) into at most N groups of consecutive
intervals, whose lengths sum up to at most ¢ in each group. Then the sum ), |f(x;) — f(xi—1)] is at
most one over each group, so the total variation of f on [a,b] is at most N .

Solution 8.1: Write Q = U2, E,, for some increasing sequence {E,} C F with 0 < u(E,) < oo,
and identify L] (u) = L"(E,, ) with the set of functions in L"(p) = L"(€, u) which vanish outside
the set E,. From (8.5), there exists for each n € N a function f, € L& (p) with ®(g) = [, fngdp,
Vg € Li(u) and ||fn||p = ||(I)|LZL(M)H < HCI)H < 0.

This f, is unique modulo p—a.e. equivalence, so f, = f, holds p—a.e. on E,, for m > n, and
we can define f:Q — R consistently by setting f := f, on E,. We have then ||f]|, = lim, ||f.|[, <
[|®|| < co by monotone convergence, and g, := gxg, — ¢ in L9(u) by dominated convergence for
every g € L9(u). Tt follows that

®(g) = limd(gxp,) = livgn/gfngdu = ligln/gfgndu = /Qfgdu-

Solution 8.3: (i) The first comparison is clear. The rather obvious set inclusion {|f + g| > 2u} C
{If] > u} U{lg| > u} leads to the second comparison. And integrating |f|? = [;° Xx{sjp>¢} d€ with
respect to p, gives
[1ran= [ ulse>ode =p [~ oty
Q 0 0
with the help of Tonelli and the change of variable £ = u”.

(ii) For oo # 0 we have Ays(u) = Af(u/|a), which leads to the first claim. The second is an easy
consequence of the comparisons

SUp((20)° A9 (2)) < 27 sup (u? (Mg (1) + A (w))) < 27 <ii%(“p/\f(“)) +igp0(upAg(U>)> :

The comparisoon [f], < ||f||, is a direct consequence of the Cebysev inequality.

Solution 9.1: The idea is to apply the Recurrence Theorem 9.1 to all powers of T'. Fix an arbitrary
k € N and let F), be the set of points in E that never return to £ under successive actions of T
by Theorem 9.1 we have u(Fy) = 0. Now for every w € E\ (F; UF,U---) we have T*(w) € E for
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some k € N, since w € E\ F ; as well as T (w) € E for some m € N, since w € E'\ F),. It remains
to repeat inductively this (already twice repeated) argument.

To prove (9.1) for a.e. w € {f > 0}, consider the set Ey = {w € Q| f(w) > 1/k}. The Recurrence
Theorem 9.1 implies that for a.e. w € E, we have: T7(w) € E) for infinitely many j € N, thus
>jen f(T7(w)) = oo. Therefore, this property holds for a.e. w € UyEy = {f > 0}.

Solution 9.2: (ii) If there are no non-constant invariant functions, it is clear (just by considering
indicator functions) that there cannot possibly be any non-trivial invariant sets — and thus that 7 is
ergodic.

Now suppose that T is ergodic and that f:{ — R is measurable and invariant, and try to show
that f is constant a.e. If C™* = {k27" < f < (k +1)27"}, then the invariance of f implies that of
C™Fk; and, for each n € N, the ergodicity of T now gives u(C™*) =0 for all but one k¥ € N. Now
take the intersection (over n) of all the ‘large’ ones among the sets C™F .

Solution 9.3: This T is clearly measure-preserving. If ¢ is a root of unity, then f(w) = W™ is
measurable, T'—invariant and non-constant.

If ¢ is not a root of unity, then the mappings w +— f(w) =w™, n € Z form a complete orthonormal
system in L?. Thus every f € L? can be written as f = Y nez On fn, Where the series is understood
to converge in L. With (U f)(w) := f(T(w)) we observe Uf, =c" fn,andso Ufn =3, oz an " fn.

T

Now if f is invariant we must have a, = a,c" for all integers, thus a, = 0 for all n # 0, and

consequently f = ag. In other words, every invariant function in L? is a constant, so T is ergodic.

Solution 9.4: Let f : Q — R be square-integrable; then the Fourier series ) ., cpn €27 with
> ez lenl? < oo of f(w) converges in L?, and because T is measure-preserving we have

Cp = /Qf(w)e%rinw dw = /Qf(T(w>)€27TinT(w) dw = eZﬂ'in&/ﬂf(T(w))eQﬂ'inT(w) dw

_ 6271'1'715/ f(w)BQTrinw dw = Cn .6271'7;715 \ VY neN.
Q

If ¢ is irrational, then we have e2™¢ £ 1 s0 ¢, =0, for every n € N; thus f is then a.e. equal to
a constant, and T is ergodic by Exercise 9.2(iii).

If £ =Fk/m for integers k and m, then the set A =U";"{w e Q: k/(2m) <w < (k+1)/(2m)}
is clearly invariant, but has Lebesgue measure 1/2.

Solution 9.6: (a) With A € T, that is, 77!4 = A mod. u, we have T"*A = A mod. u, thus
w(ANT=FA) = u(A), for every k € N. Therefore, taking B = A in the weak mixing property (9.6),
we obtain u(A) = p2(A), so u(A) =0 or 1. In other words, T is ergodic.

e If T is ergodic, then Corollary 9.1 applied to f = xp, B € F gives lim, . (1/n) Zz;é XT-kg =
u(B) a.e. Integrate both sides over A € F and use the dominated (or even bounded) convergence
theorem, to obtain (9.6).

(b) Let us assume that 7' is ergodic, and try to show (9.7) (the other implication is now easy). Because
T is measure-preserving, the mapping ¢ + o T is an isometry on L?(u), and for given f € L2?(u)
the set of averages {(1/n) ZZ;& foT™},en belongs to a closed ball in this Hilbert space. Such a ball
is compact in the weak topology of the space, so the above sequence of averages will converge weakly in
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the space (i.e., (9.7) will hold for any g € L?(u)) once it has been established that the set in question
has a unique limit point.
Any such limit point, however, is a T-invariant function, thus constant by ergodicity. Since

. 1 n—1 . B
fim o3 [ AT = | re)aue).

this constant must be [, f(w) du(w).
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