
1.5. INEQUALITIES AND FUNCTION SPACES

For any given real number p > 0, let us denote by Lp ≡ Lp(µ) the set of measurable,
real-valued functions f on the measure-space (Ω,F , µ) with |f |p ∈ L1, or equivalently

||f ||p :=
( ∫

Ω

|f |p dµ

)1/p

< ∞ . (5.1)

The notation is in honor of H. Lebesgue.
The elementary properties |f + g|p ≤ (2 ·max(|f |, |g|))p ≤ 2p · (|f |p + |g|p) and

||αf ||p = |α| ||f ||p for α ∈ R, show that Lp is a real vector space. We shall say
that a sequence {fn}n∈N of functions in Lp converges to some function f in Lp , if
limn→∞ ||fn − f ||p = 0 .

On the other hand, the “triangle inequality” (5.3) below shows that, for 1 ≤ p < ∞ ,
the quantity || · ||p of (5.1) is a norm on Lp .

Important Remark: We employ here and in the sequel the “usual convention” of identifying
functions that are equal µ−a.e. on Ω; for instance, we identify f = χQ with g = 0 on
the real line with Lebesgue measure. Thus, we are (tacitly) treating Lp as a space of
equivalence classes of functions, rather than as a space of functions.

HÖLDER INEQUALITY: For any p ∈ (1,∞), define q by (1/p)+ (1/q) = 1 ; then
for any measurable, real-valued functions f, g we have

||fg||1 ≤ ||f ||p · ||g||q . (5.2)

If f ∈ Lp and g ∈ Lq, this shows fg ∈ L1 , and in this case (5.2) holds as equality if
and only if there exist real constants α, β such that α β 6= 0 and α|f |p = β|g|q, µ−a.e.

For p = 2 , the inequality (5.2) is known as the Cauchy-Schwarz inequality.

MINKOWSKI INEQUALITY: For any p ∈ [1,∞), we have the triangle inequality

||f + g||p ≤ ||f ||p + ||g||p , ∀ f, g ∈ Lp. (5.3)

5.1 Exercise: The triangle inequality (5.3) fails for p ∈ (0, 1). (Hint: Justify the
elementary inequality (a + b)p < ap + bp for a > 0 , b > 0 , 0 < p < 1, and write it
with a = (µ(E))1/p

, b = (µ(F ))1/p for any two disjoint measurable sets E, F of positive
measure.)

5.2 Exercise: For a ≥ 0, b ≥ 0, 0 < λ < 1 we have aλ · b1−λ ≤ λa + (1 − λ)b , with
equality iff a = b. (Hint: The function ξ(u) = uλ − uλ attains its maximum, namely
1− λ , over the half-line [0,∞), at u = 1 .)
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Proof of (5.2) : The inequality is obvious when its right-hand side ||f ||p · ||g||q vanishes,
so let us assume ||f ||p > 0, ||g||q > 0. Then we can read the inequality of Exercise 5.2
with a = (|f(ω)|/||f ||p)p

, b = (|g(ω)|/||g||q)q
, λ = (1/p), to wit

|f(ω) g(ω)|
||f ||p ||g||q ≤ |f(ω)|p

p I(|f |p) +
|g(ω)|q
q I(|g|q) , for ω ∈ Ω

(with equality, iff I(|g|q) · |f(ω)|p = I(|f |p) · |g(ω)|q holds for µ−a.e. ω ∈ Ω) ; integrating
over Ω with respect to µ, we obtain (||fg||1) / (||f ||p ||g||q ) ≤ (1/p) + (1/q) = 1.

Proof of (5.3) : The inequality is quite clear for p = 1, as well as when f +g = 0, µ−a.e.
Now for p > 1 and µ(f + g 6= 0) > 0, we start by writing |f + g|p ≤ |f | · |f + g|p−1 +
|g| · |f + g|p−1; integrating with respect to µ and then applying Hölder’s inequality to
the right-hand side, we obtain

I (|f + g|p) ≤ ||f ||p · ||(|f + g|)p−1||q + ||g||p · ||(|f + g|)p−1||q
≤ (||f ||p + ||g||p) ·

(
I

(
|f + g|q(p−1)

))1/q

= (||f ||p + ||g||p) ·
(
I (|f + g|p)

)1/q

whence (I (|f + g|p))1−(1/q) = ||f + g||p ≤ ||f ||p + ||g||p . ¦

Let us recall from Appendix C that a function F : (a, b) → R is called convex, if the
property F

(∑K
k=1 λkyk

)
≤ ∑K

k=1 F (λkyk) holds for any y1, . . . yK in (a, b) and any
λ1, . . . , λK in [0, 1] with λ1+ · · ·+λK = 1 and any K ∈ N . In particular, if we interpret
{y1, . . . yK } as the range of a simple function h on a probability space (Ω,F , µ) , and λk

as µ
(
h−1({yk})

)
, then the inequality reads F

(
I(h)

) ≤ I
(
F (h)

)
, and is actually valid for

any integrable function h , as the following result demonstrates.

JENSEN INEQUALITY: Suppose that µ is a probability measure, that h : Ω →
(a, b) is in L1(µ), and that F : (a, b) → R is a convex function, for some −∞ ≤ a <

b ≤ ∞. We have then
F

(
I(h)

) ≤ I
(
F (h)

)
. (5.4)

Proof : Since F (·) is convex, its left- and right-derivatives D−F (·) ≤ D+F (·) exist
everywhere on (a, b), are nondecreasing functions, and F (·) = F (x0) +

∫ ·
x0

D±F (u) du for
fixed x0 ∈ (a, b); in particular, F (·) is continuous (Properties C.1 − C.3 in Appendix C;
Exercise 4.4). Now for any given s ∈ (a, b), there exists a real number β such that

F (t)− F (s) ≥ β(t− s) , ∀ t ∈ (a, b) ;

just take β ∈ [D−F (s), D+F (s)]. With s = I(h), t = h(ω) this inequality
reads: F (h(ω))−F (I(h)) ≥ β · (h(ω)− I(h)), ∀ ω ∈ Ω. Thus F (h) is measurable (as the
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composition of the measurable h with the continuous F ) and its integral is well-defined (as
F (h) is bounded from below by an integrable function). Integrate over Ω with respect to µ

and recall µ(Ω) = 1, to obtain I
(
F (h)

)−F
(
I(h)

) ·µ(Ω) ≥ β
(
I(h)−I(h) ·µ(Ω)

)
= 0, that

is, (5.4). ¦

We can also define a space L∞ ≡ L∞(µ) , as the set of all measurable functions
f : Ω → R which are essentially bounded, in the sense that the essential least-upper-

bound

||f ||∞ := inf { a ≥ 0 : |f(ω)| ≤ a for a.e. ω ∈ Ω }

= sup {a ≥ 0 |µ ({ω ∈ Ω : |f(ω)| > a}) > 0} (5.5)

is finite: ||f ||∞ < ∞ . Under the usual convention, it is straightforward to check that
L∞ is a real vector space with || · ||∞ as its norm.

The essential least-upper-bound ignores sets of measure zero; for instance, if f(ω) = 1
for rational ω ∈ R and f(ω) = 0 otherwise, then ||f ||∞ = 0 but supω∈Ω|f(ω)| = 1 .

A real-valued function f can easily have ||f ||∞ = ∞ . Just consider (R,B(R)) with
the Gaussian measure µ(A) = (

√
2π )−1

∫
A

e−x2/2dx , and f(ω) = ω, ω ∈ R ; note that
µ(|f | > a) > 0 holds for every a ≥ 0 .

5.3 Exercise: (i) Note that the infimum in (5.5) is actually attained.

(ii) Suppose f ∈ L∞ . Then |f(ω)| ≤ ||f ||∞ for µ−a.e. ω ∈ Ω ; and for every 0 < a <

||f ||∞ there exists a set E ∈ F with µ(E) > 0 such that |f(ω)| > a , ∀ ω ∈ E .

(iii) For any f ∈ L1, g ∈ L∞, h ∈ L∞ and {gn}n∈N ⊆ L∞, we have the analogue of the
Hölder inequality ||fg||1 ≤ ||f ||1 · ||g||∞ , the analogue of the Minkowski inequality
||g + h||∞ ≤ ||g||∞ + ||h||∞ . We also have the equivalence

lim
n→∞

||gn − g||∞ = 0 ⇐⇒ lim
n→∞

(
sup
ω∈E

|gn(ω)− g(ω)|
)

= 0

for some measurable set E with µ(Ec) = 0. In other words, convergence in L∞ is uniform
convergence outside a set of measure zero.

5.4 Exercise : Egorov’s Theorem. Suppose g, {gn}n∈N are measurable functions
on a finite measure space ( µ(Ω) < ∞), and limn→∞ gn = g holds µ−a.e. Then
(i) for every δ > 0, there exists a measurable set E with µ(Ec) < δ and

lim
n→∞

(
sup
ω∈E

|gn(ω)− g(ω)|
)

= 0 ;

(ii) limn→∞ µ(|gn − g| > ε) = 0 , ∀ ε > 0 ;
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(iii) the assumption µ(Ω) < ∞ can be replaced by “ |gn| ≤ f , ∀n ∈ N for some
f ∈ L1(µ) ” in (i) above.

5.5 EXERCISE : CONVERGENCE IN MEASURE. Suppose f , g, {fn}n∈N,
{gn}n∈N are elements of L0, the space of measurable, real-valued functions on a complete
measure space (Ω,F , µ) . We say that the sequence {gn}n∈N converges in measure
to g , if

lim
n→∞

µ(|gn − g| > ε) = 0 , ∀ ε > 0 .

(i) Argue that the limit g is unique modulo µ−a.e. equality. Also, observe that µ−a.e.

convergence implies convergence in measure, if µ(Ω) < ∞.

(ii) If µ(Ω) < ∞ , show that

ρ(f, g) ≡ I

( |f − g|
1 + |f − g|

)

defines a metric on the space L0 of measurable, real-valued functions, and that con-
vergence in this metric is equivalent to convergence in measure. Under this metric L0

becomes a Fréchet space (complete, metrizable vector space).
Similarly, with %(f, g) := I(|f − g| ∧ 1) .

(iii) Show that convergence in Lp , for some p > 0 , implies convergence in measure.
(Hint: Recall the Čebyšev inequality of (2.14).)

(iv) Show by example, that µ−a.e. convergence does not imply convergence in Lp ; that
µ−a.e. convergence does not imply convergence in measure if µ(Ω) = ∞; and that
convergence in Lp does not imply µ−a.e. convergence.

(v) Suppose that the sequence {gn}n∈N is “Cauchy in measure”, i.e.,

lim
n→∞
m→∞

µ(|gn − gm| > ε) = 0 , ∀ ε > 0 .

Then there exists a measurable function g : Ω → R such that {gn}n∈N converges
in measure to g; as well as a subsequence {gnk

}k∈N which converges to g , µ−a.e.

(vi) Suppose {fn}n∈N (resp., {gn}n∈N) converges in measure to f (resp., g). Show that:

• {fn + gn}n∈N converges in measure to f + g ;

• {fn gn}n∈N converges in measure to f g if µ(Ω) < ∞ .

• {ϕ(fn)}n∈N converges in measure to ϕ(f) , provided ϕ : R → R is uniformly
continuous;

• {ϕ(fn)}n∈N converges in measure to ϕ(f) , provided ϕ : R → R is continuous and
µ(Ω) < ∞ . More generally, {Φ(fn, gn)}n∈N converges in measure to Φ(f, g) , for
any continuous function Φ : R2 → R and µ(Ω) < ∞ .
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• Fatou’s Lemma: I(f) ≤ lim infn→∞ I(fn) , provided fn ≥ 0, ∀n ∈ N ; and

• Dominated Convergence Theorem: f ∈ L1(µ) , limn→∞ I(|fn−f |) = 0 and I(f) =
limn→∞ I(fn) , provided that |fn| ≤ h, ∀n ∈ N holds for some h ∈ L1(µ) .

5.6 Exercise: If 0 < p < q < r ≤ ∞, then Lp ∩ Lr ⊆ Lq ; in fact,

||f ||q ≤ ( ||f ||p)` ( ||f ||r)1−`
, with ` ∈ [0, 1] defined via

1
q

=
`

p
+

1− `

r
.

5.7 Exercise: Lyapunov Inequality. If µ(Ω) < ∞ and 0 < p < q ≤ ∞, then
Lq ⊆ Lp ; in particular

||f ||p ≤ ||f ||q · (µ(Ω))r
, with r = (1/p)− (1/q) ;

and when µ is a probability measure, this leads to the Lyapunov Inequality

||f ||p ≤ ||f ||q .

5.8 Exercise: If µ(Ω) = ∞ , the conclusions of the previous Exercise do not hold; in
fact, Lp may then fail to be a subset of Lq , for all p 6= q.

(i) Show by example that, when µ(Ω) = ∞ , we may have {p ∈ [1,∞) | f ∈ Lp} = (r, s) ,
a proper subinterval of (1,∞).

(ii) Take Ω = (0,∞) with Lebesgue measure, and show that f(ω) = 1√
ω (1+| log ω|) is in

Lp only for p = 2 .

5.9 Exercise: Differentiating under the integral. Let [a, b] be a given bounded
interval of the real line, let f : [a, b] × Ω → R a measurable function such that f(t, ·) is
in L1(µ) for every t ∈ [a, b], and define the function F (t) =

∫
Ω

f(t, ω) dµ(ω) , t ∈ [a, b] .
(i) Suppose that there is a g ∈ L1(µ) such that |f(t, ω)| ≤ g(ω), ∀ (t, ω) ∈ [a, b]× Ω. If

lims→t f(s, ω) = f(t, ω), ∀ω ∈ Ω , then lims→t F (s) = F (t). In particular, if f(·, ω)
is continuous for each ω ∈ Ω, then F is continuous.

(ii) Suppose that the partial derivative ∂f
∂t exists, and satisfies |∂f

∂t (t, ω)| ≤
h(ω), ∀ (t, ω) ∈ [a, b] × Ω for some h ∈ L1(µ). Then F is differentiable, and “we

can differentiate under the integral sign”: F ′(t) =
∫
Ω

∂f
∂t (t, ω) dµ(ω) .

5.10 EXERCISE : DUALITY OF Lp−SPACES: (i) For any p ∈ [1,∞) and f ∈
Lp(µ) , the mapping g 7→ Tf (g) := I(fg) defines a bounded, linear operator on Lq(µ)
with (1/p) + (1/q) = 1 , whose norm is

||Tf || := sup
{ ∣∣∣

∫

Ω

fg dµ
∣∣∣ : g ∈ Lq(µ) , ||g||q = 1

}
= ||f ||p < ∞ . (5.6)
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This holds also for p = ∞ , if the measure µ is semi-finite; that is, if for every E ∈ F
with µ(E) = ∞ , there exists F ∈ F with F ⊂ E , 0 < µ(F ) < ∞ .
(ii) Conversely, suppose that µ is semi-finite and p ∈ [1,∞], (1/p) + (1/q) = 1. If f

is measurable and such that fg ∈ L1(µ) for every g in the space S0 of simple functions
that vanish outside a set of finite measure, and if

N(f) := sup
{ ∣∣∣

∫

Ω

fg dµ
∣∣∣ : g ∈ S0, ||g||q = 1

}
< ∞ ,

then f ∈ Lp(µ) and N(f) = ||f ||p .
This last result can be construed as a converse Hölder inequality.

A: COMPLETENESS OF Lp SPACES

The following result shows that the Lp spaces of this section are Banach (that is, complete
normed linear) spaces, in the topologies induced by the norms of (5.1), (5.5) for 1 ≤ p ≤ ∞.

5.1 THEOREM: The space Lp is complete, for any 1 ≤ p ≤ ∞. In other words:
For any Cauchy sequence {fn}n∈N in Lp, i.e., with the property that for every ε > 0 there
is an integer Nε so that

||fn − fm||p ≤ ε holds for any n ≥ Nε , m ≥ Nε , (5.7)

there exists a unique f ∈ Lp such that ||fn − f ||p → 0 as n →∞ .
Furthermore, there exists a subsequence {fnk

}k∈N ⊆ {fn}n∈N , as well as a function
F : Ω → [0,∞) in Lp , such that for µ−a.e. ω ∈ Ω we have:

|fnk
(ω)| ≤ F (ω) , ∀ k ∈ N and lim

k→∞
fnk

(ω) = f(ω) .

The argument involves a couple of ideas that are often used to great advantage in
Analysis and in Probability; see, for instance, Theorem 2.4.1 (iii), as well as the proof of
the Strong Law of Large Numbers (Theorem 2.3.2). The first idea, is that
• subsequences that converge “sufficiently fast” in Lp must converge also µ−a.e.,

and the second idea, is that
• it is enough to show Lp convergence for some subsequence.

Proof : To see how these ideas work in our present context, observe that the Cauchy
property (5.7) allows us to choose a subsequence {fnk

} with ||fnk+1 − fnk
||p ≤ 2−k , for

all k ∈ N . The sequence of positive functions {Fk}k∈N defined by

F1(ω) := |fn1(ω)| , Fk+1(ω) := |fn1(ω)| +
k∑

j=1

|fnj+1(ω)− fnj (ω)| for k ∈ N
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satisfies ||Fk||p ≤ ||fn1 ||p +
∑k−1

j=1 2−j ≤ ||fn1 ||p + 1 from the triangle inequality, and
increases µ−a.e. to a function F ; then Fatou’s Lemma guarantees that F is in Lp , hence
also µ−a.e. finite: I(F p) ≤ lim k I((Fk)p) ≤ (

1 + ||fn1 ||p
)p

< ∞ .
As a result, the sequence

fnk+1(ω) = fn1(ω) +
k∑

j=1

[
fnj+1(ω)− fnj

(ω)
]

, k ∈ N

converges absolutely for µ−a.e. ω ∈ Ω to some real number

f(ω) := lim
k→∞

fnk
(ω) = fn1(ω) +

∑

j∈N

[
fnj+1(ω)− fnj

(ω)
]

.

Because |fnk
(ω)| ≤ F (ω) and F ∈ Lp , we deduce from the Dominated Convergence

Theorem that f ∈ Lp and ||fnk
− f ||p −→ 0 as k →∞, since |fnk

− f | ≤ F + |f | ∈ Lp.

Now let us argue that the entire sequence {fn}n∈N must converge in Lp to this

function f ∈ Lp . For any ε > 0 we can choose Kε ∈ N large enough, so that ||fnk
−

f ||p ≤ ε/2 holds for all k ≥ Kε . On the other hand, from (5.7) we can choose Nε ∈ N
large enough, so that ||fn − fnk

||p ≤ ε/2 holds for all n ≥ Nε and for all k ≥ Kε . The
triangle inequality now implies

||fn − f ||p ≤ ||fn − fnk
||p + ||fnk

− f ||p ≤ ε , ∀ n ≥ Nε ,

which shows that the entire sequence {fn}n∈N converges in Lp to the function f . ¦

The Hölder inequality places the Banach spaces of this Theorem in a formal duality,

with Lq the dual of the space Lp for 1 ≤ p ≤ ∞ when (1/p) + (1/q) = 1 . This
duality is studied in detail in section 1.8; recall Exercise 5.10, and consult Theorem 8.1
and Remark 8.1 in this regard.

Clearly, the space L2 of square-integrable functions is self-dual in this sense; it is
also a Hilbert space with inner product 〈f, g〉 =

∫
Ω

fg dµ , as discussed in Appendix B.

5.11 Exercise: If 1 ≤ p < ∞ , the simple functions of the form f =
∑N

n=1 αn χEn with
αn ∈ R and µ(En) < ∞ for n = 1, . . . , N , N ∈ N are dense in Lp .

5.12 Exercise: For any f : R → R and any x ∈ R , define the “shift” fx(·) ≡ f(x + ·) .
Show that, if f ∈ Lp(R) ≡ Lp(R,B(R), λ) for some 1 ≤ p < ∞ , and if f is not
identically equal to a constant (a.e.), then limx→0 ||fx − f ||p = 0 . Observe also that the
result fails for p = ∞ , as it amounts then to the requirement that f agree a.e. with a
uniformly continuous function. (Hint: Establish the result first for continuous functions
with compact support; then approximate.)
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5.13 Exercise: Justifying the notation ||f ||∞ for the essential least-upper-
bound. Show that if f ∈ Lr ∩ L∞ for some 1 ≤ r < ∞, then f ∈ Lp for any
p ∈ [r,∞] and we have ||f ||∞ = limp→∞ ||f ||p .

5.14 Exercise: Differentiating the Lp−norm. With 1 < p < ∞ and f , g in Lp ,
show that the convex function F (u) :=

∫
Ω
|f + ug|p dµ is differentiable at u = 0 , with

derivative

F ′(0) = p

∫

Ω

|f |p−2 f g dµ .

(Hint: Use the convexity of x 7→ |x|p.)

5.15 Exercise: Hanner Inequalities. Suppose f, g are in Lp . With 1 ≤ p ≤ 2 , show

(
||f + g||p

)p

+
(
||f − g||p

)p

≥
(
||f ||p + ||g||p

)p

+
∣∣∣||f ||p − ||g||p

∣∣∣
p

, (5.8)

(
||f + g||p + ||f − g||p

)p

+
∣∣∣||f + g||p − ||f − g||p

∣∣∣
p

≤ 2p
[(
||f ||p

)p

+
(
||g||p

)p]
. (5.9)

For 2 ≤ p < ∞ , show that the inequalities are reversed; in particular, for p = 2 the
inequalities lead to the Parallelogram Identity (B.7) of Appendix B. For p = 1 , the
inequality of (5.8) is just the triangle inequality.

5.16 Exercise: Projection on a closed, convex set. Let G be a closed, convex subset
of the space Lp for 1 < p < ∞ : i.e., ug + (1 − u)h belongs to G for every 0 ≤ u ≤ 1 ,
g ∈ G , h ∈ G ; and every Cauchy sequence {zn}n∈N ⊂ G converges in Lp to some z ∈ G .
Then, for any f /∈ (

Lp \ G)
, there exists an element g∗ ∈ G such that

δ := inf
g∈G

||f − g||p = ||f − g∗||p .

Furthemore, ∫

Ω

(
g − g∗

) (
f − g∗

) |f − g∗|p−2 dµ ≤ 0 , ∀ g ∈ G .

(Hint: This is a generalization of the Projection in Hilbert-space result, Theorem B.2 of
Appendix B, which corresponds to p = 2 here. Try the case 1 < p ≤ 2 first, by following
the same reasoning as in the proof of that result and using Exercises 5.15, 5.14 in lieu of
the Parallelogram Identity (B.7).)
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B: UNIFORM INTEGRABILITY ∗

This subsection introduces the important, but rather technical, notion of uniform integra-
bility. The reader may wish to skip this section entirely on first reading, and return to
it after some familiarity with the contents of sections 1.7, 1.9 or of Chapter 2 has been
acquired. The results of this section will be used in a crucial way in the proof of the
Pointwise Ergodic Theorem 9.2.

Let us begin by placing ourselves, throughout this subsection, on a finite measure
space (Ω,F , µ), that is µ(Ω) < ∞ , and observe that for any function f ∈ L1 we have∫
{|f |>λ} |f | dµ → 0 as λ →∞. The notion of uniform integrability is a generalization of

this property.

5.1 Definition: We say that a family {fα}α∈A of real-valued, measurable functions, is
uniformly integrable, if for every ε > 0 , there exists λε > 0 such that:

sup
α∈A

∫

{|fα|>λ}
|fα| dµ < ε , ∀ λ ≥ λε .

Uniform integrability implies boundedness in L1 , as the following result demonstrates.

5.1 Proposition: The family {fα}α∈A is uniform integrable, if and only if both conditions
below hold:
(a) Boundedness in L1 : supα∈A I(|fα|) =: K < ∞ ;
(b) Uniform absolute continuity: for every ε > 0 , there exists δε > 0 such that, for

every B ∈ F with µ(B) < δε , and all α ∈ A , we have
∫

B
|fα| dµ < ε .

Proof: Suppose {fα}α∈A is uniformly integrable; with ε, λε as in Definition 5.1, we have

I(|fα|) =
∫

{|fα|>λε}
|fα| dµ +

∫

{|fα|≤λε}
|fα| dµ ≤ ε + λε · µ(Ω) < ∞ , ∀ α ∈ A ,

and for any B ∈ F with µ(B) < δε := ε/λε :

∫

B

|fα| dµ =
∫

B∩{|fα|>λε}
|fα| dµ +

∫

B∩{|fα|≤λε}
|fα| dµ

≤
∫

{|fα|>λε}
|fα| dµ + λε · µ(B) < ε + δε λε < 2ε .

Now suppose that (a), (b) hold; from (a) and the Čebyšev inequality of (2.14), we
obtain µ( |fα| > λ) ≤ I(|fα|) / λ ≤ K/λ for all α ∈ A, λ > 0. Thus, for any δ > 0 and
λ ≥ (K + 1)/δ , and all α ∈ A , we have supα∈A µ( |fα| > λ) < δ . Substituting in (b) we
obtain supα∈A

∫
{|fα|>λ} |fα| dµ < ε , for all λ ≥ λε := (K + 1)/δε .
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5.17 Exercise: Each of the following conditions is sufficient for the uniform integrability
of the family {fα}α∈A of measurable functions:
(i) there exists f ∈ L1 such that, for every α ∈ A, we have: |fα| ≤ |f | , µ−a.e.
(ii) Criterion of De la Vallée Poussin: there exists a function h : [0,∞) → [0,∞)

with h(x)/x positive and increasing on (0,∞) and limx→∞ (h(x)/x) = ∞ , such
that: supα∈A

∫
Ω

(h ◦ |fα|) dµ < ∞ .
(iii) supα∈A

∫
Ω
|fα|p dµ < ∞ , for some p > 1.

5.18 Exercise: Show by example that a family of measurable functions can be
(i) bounded in L1 but not uniformly integrable;
(ii) uniformly integrable, but not dominated by an integrable function, as was the case in

Exercise 5.17 (i).

The following result complements nicely the Lebesgue Dominated Convergence Theorem
for functions in L1, by substituting the domination condition with uniform integrability.

5.2 Theorem: Generalized Dominated Convergence. For a sequence of functions
{fn}n∈N ⊂ L1 which converges in measure to some measurable function f , the following
conditions are equivalent:
(i) {fn}n∈N is uniformly integrable,
(ii) I(|fn − f |) −→ 0 , as n →∞ ,
(iii) I(|fn|) −→ I(|f |) < ∞ , as n →∞ .

Proof: (i) ⇒ (ii). From Exercise 5.5 (v),(vi), Fatou’s lemma and condition (a) of
Proposition 5.1, we have I(|f |) ≤ lim infk I (|fnk

|) ≤ supn I(|fn|) =: K < ∞ . Then
using Proposition 5.1 once again we see that the sequence {fn − f}n∈N is uniformly
integrable, and

I(|fn − f |) =
∫

{|fn−f |≤ε}
|fn − f | dµ +

∫

{|fn−f |>ε}
|fn − f | dµ

≤ ε µ(Ω) +
∫

{|fn−f |>ε}
|fn − f | dµ .

By assumption µ( |fn − f | > ε) → 0 , so the last integral also tends to zero as n → ∞
(recall Proposition 5.1 (b)). Therefore lim supn I(|fn−f |) ≤ ε µ(Ω) , and the result follows
by letting ε ↓ 0.

The implication (ii) ⇒ (iii) follows directly from |I(|fn|)−I(|f |)| ≤ I(|fn−f |) → 0 ,
as n → ∞ ( triangle inequality). For the final implication (iii) ⇒ (i), fix λ > 0 and
introduce a bounded, uniformly continuous function ϕλ : R → [0,∞) with ϕλ(x) ≤
|x|, ∀x ∈ R and ϕλ(x) = |x| for |x| ≤ λ , ϕλ(x) = 0 for |x| > λ + 1 . Thus

∫

{|f |≤λ}
|f | dµ ≤ I (ϕλ(|f |)) = lim

n
I (ϕλ(|fn|)) ≤ lim infn

∫

{|fn|≤λ+1}
|fn| dµ ,
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thanks to Exercise 5.5.(vi). Subtracting memberwise from (iii), we obtain then

lim supn

∫

{|fn|>λ+1}
|fn| dµ ≤

∫

{|f |>λ}
|f | dµ −→ 0 , as λ →∞ .

The uniform integrability of {fn}n∈N follows now easily. ♦

11


