
1.6. PRODUCT MEASURE-SPACES

Let us consider a family {(Ωα,Fα)}α∈A of nonempty measurable spaces, as well as their
Cartesian product space Ω :=

∏
α∈A Ωα ; this is the set of all mappings ω : A →

∪α∈AΩα such that ωα ≡ ω(α) ∈ Ωα for every α ∈ A. The so-called Axiom of Choice
postulates that Ω is nonempty, when A 6= ∅ . We would like to endow this product space
Ω with a σ-algebra of measurable sets.

For this purpose, we introduce the class C := {π−1
α (Eα) |Eα ∈ Fα, α ∈ A} of mea-

surable cylinder sets , and define the product σ-algebra F ≡ ⊗
α∈A Fα := σ(C) (collection

of product-measurable sets) as the σ-algebra generated by the class of measurable cylinder
sets. Here πα : Ω → Ωα is the αth coördinate (projection) map πα(ω) = ω(α).

6.1 Remark : In the case of countable index-set A, the product σ-algebra F is also
generated by the class of measurable rectangles R := {∏α∈A Eα |Eα ∈ Fα, α ∈ A} , to
wit, F = σ(R) .

6.1 Exercise : If each Fα = σ(Eα) is generated by a class Eα of subsets of Ωα, then
the product σ−algebra can be expressed as F = σ(C′) , where C′ := {π−1

α (Eα) |Eα ∈
Eα, α ∈ A}. Furthermore, if A is countable and Ωα ∈ Eα , ∀α ∈ A , then we also have
F = σ(R′) , where R′ := {∏α∈A Eα |Eα ∈ Eα, α ∈ A} .

6.2 Exercise : Suppose that Ω1, · · · , Ωn are metric spaces, and equip their (finite)
product space Ω =

∏n
j=1 Ωj with the product metric. Show then that

⊗n
j=1 B(Ωj) ⊆

B(Ω), with equality if the spaces Ω1, · · · ,Ωn are separable. In particular, B(Rn) =
B(R)⊗ · · · ⊗ B(R) is the n−fold product of the Borel σ-algebra on the real line.

Consider now the simplest case of just two component measure spaces (Ωj ,Fj , µj) ,
j = 1, 2 ; on their product space (Ω,F) = (Ω1 × Ω2,F1 ⊗ F2) we should like to define a
product measure µ ≡ µ1 ⊗ µ2 with the property

µ(E1 × E2) = µ1(E1) · µ2(E2), ∀ E1 ∈ F1, E2 ∈ F2. (6.1)

One way to go about this, is to follow the same path that we used for the construction of
Lebesgue-Stieltjes measures in subsection 1.4.A: to wit, start by constructing the “proto-
measure” `(E) = µ1(E1) · µ2(E2) on the elementary family R of measurable rectangles
E = E1×E2 (E1 ∈ F1 , E2 ∈ F2 ); obtain a pre-measure ν by extending ` in the obvious
(and consistent) way to the algebra E of finite unions of disjoint such rectangles; and then
extend this pre-measure to a measure µ on the product σ-algebra F = σ(E), while still
satisfying the property (6.1).
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Another approach, in fact the one that we shall follow, uses integration theory to
obtain an integral representation of the product measure (cf. Theorem 6.1 below), and
then exploits this representation to study the properties of integration with respect to this
measure (the Tonelli-Fubini Theorems 6.2, 6.3). In order to describe these results, let us
introduce the “section notation”

Eωi
:= {ωj ∈ Ωj | (ω1, ω2) ∈ E} and fωi

(ωj) := f(ω1, ω2) , ωj ∈ Ωj (j 6= i) (6.2)

for subsets E of the product space Ω and for functions f : Ω → R, with ωi ∈ Ωi fixed.

It can be checked that if E ∈ F1⊗F2 , and if the mapping f is (F1⊗F2)−measurable,
then the section Eωi is in Fj and the function ωj 7→ fωi(ωj) is Fj−measurable, for
j 6= i . Indeed, the collection G of subsets E of Ω1 × Ω2 with

Eω1 ∈ F2 for all ω1 ∈ Ω1 , and Eω2 ∈ F1 for all ω2 ∈ Ω2

contains all measurable rectangles E = E1 × E2 (E1 ∈ F1 , E2 ∈ F2 ), and is a σ-
algebra:

(⋃
n∈N E(n)

)
ωi

=
⋃

n∈N(E(n))ωi , (Ec)ωi = (Eωi)
c for i = 1, 2 ; consequently,

G ⊇ F ⊗F2 . The second claim then follows, since (fωi)
−1(B) = (f−1(B))ωi for i = 1, 2 .

Furthermore, the mapping

ωi 7→ gi(ωi) ≡ µj(Eωi) is Fi −measurable, for j 6= i , (6.3)

at least when both spaces are σ-finite, as we shall see below (cf. proof of Theorem 6.1).

To illustrate the integral representation methods for constructing the product measure,
let us recall from elementary calculus the computation of the area of the unit disc by means
of a single integral.

6.1 Example: Let Ωi = R, Fi = B(R) with µi = λ Lebesgue measure (i = 1, 2) and
consider the unit circle E = {(ω1, ω2) |ω2

1 +ω2
2 ≤ 1} ∈ B(Ω) in the product-space Ω = R2 .

Then in the notation of (6.2) and (6.3) we have: Eω1 = {ω2 : |ω2| ≤
√

1− ω2
1 } , g1(ω1) =

µ2(Eω1) = 2
√

1− ω2
1 for |ω1| ≤ 1 ; and Eω1 = ∅ , g1(ω1) = µ2(Eω1) = 0 for |ω1| >

1 . The resulting function g1(·) is clearly measurable, and its integral is
∫
Ω1

g1 dµ1 =

2
∫ 1

−1

√
1− ω2

1 dω1 = π , the area of the unit disc.

The calculation of this example can be generalized, in a way that leads directly to a
measure on the product σ-algebra with the desired property (6.1).
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6.1 THEOREM : PRODUCT MEASURE. If the component measure spaces are
σ-finite, then the set-function

µ(E) :=
∫

Ω1

g1 dµ1 =
∫

Ω1

µ2(Eω1) dµ1(ω1) , E ∈ F

is a σ-finite measure on the product σ-algebra F = F1 ⊗F2 ; it satisfies

µ(E) =
∫

Ω2

g2 dµ2 =
∫

Ω2

µ1(Eω2) dµ2(ω2)

for every E ∈ F , thus also the property (6.1); and is the unique measure on F with the
property (6.1).

The measure of Theorem 6.1 is denoted µ = µ1⊗µ2 and is called product measure
of µ1, µ2 on F1⊗F2. Clearly, µ(E) = 0 , if and only if: µj(Eωi) = 0 for µi−a.e. ωi ∈ Ωi

(i 6= j). And µ is a probability measure, if both µ1 , µ2 are probability measures. The
following two fundamental results describe the properties of integration with respect to
this product-measure, first for positive and then for general, real-valued functions on Ω.

6.2 THEOREM : TONELLI. In the context of Theorem 6.1, let f : Ω → [0,∞) be
F−measurable. Then the functions ωi 7→ hi(ωi) :=

∫
Ωj

fωi dµj are Fi−measurable, for
1 ≤ i 6= j ≤ 2, and we have

∫

Ω

f dµ =
∫

Ω1

h1 dµ1 =
∫

Ω2

h2 dµ2 (6.5)

or, more suggestively,
∫ ∫

Ω1×Ω2

f(ω1, ω2) d(µ1 ⊗ µ2)(ω1, ω2) =
∫

Ω1

( ∫

Ω2

fω1(ω2) dµ2(ω2)
)

dµ1(ω1)

=
∫

Ω2

( ∫

Ω1

fω2(ω1) dµ1(ω1)
)

dµ2(ω2) .

6.3 THEOREM : FUBINI. In the context of Theorem 6.1, consider a function f ∈
L1(Ω,F , µ) , that is, integrable on the product-space.

Then the function fωi(·) belongs to L1(Ωj ,Fj , µj) for µi−a.e. ωi ∈ Ωi , and the
function hi belongs to L1(Ωi,Fi, µi), for 1 ≤ i 6= j ≤ 2 . Furthermore, the identities of
(6.5) hold.

PROOF OF THEOREM 6.1 : Consider first the finite case µ1(Ω1) + µ2(Ω2) < ∞ . We
shall verify that the family

M := {E ⊆ Ω1 × Ω2 | ω1 7→ µ2(Eω1) = g1(ω1) is F1 −measurable }
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contains all product-measurable sets. Indeed, M contains the elementary class R of
measurable rectangles, as well as the algebra E of finite disjoint unions of such rectangles,
in the notation of the paragraph following (6.1). On the other hand, the continuity prop-
erties (2.5) and (2.15) of the measure µ2 from below and above, respectively (the latter
needs the assumption µ2(Ω2) < ∞ ), allow one to check that M is also a monotone class
(Exercise 3.7). Thus, from the Monotone Class Theorem, M⊇ m(E) = σ(E) =: F1⊗F2 .

• We can verify now that the set-function

µ(E) :=
∫

Ω1

g1 dµ1 ≡
∫

Ω1

µ2(Eω1) dµ1(ω1) , E ∈ F1 ⊗F2

is a finite measure which satisfies (6.1) on R .
To see this latter property, just note that for E = E1×E2 with Ei ∈ Fi (i = 1, 2) we

have: Eω1 = E2 (resp., ∅) for ω1 ∈ E1 (resp., for ω1 /∈ E1), and thus

µ2(Eω1) = χE1(ω1) · µ2(E2) , µ(E) =
∫

Ω1

µ2(Eω1) dµ1(ω1) = µ1(E1) · µ2(E2) .

The uniqueness claim follows from the uniqueness part of the Hahn extension theorem. To
check countable additivity, take any sequence {E(n)}n∈N ⊆ F1 ⊗ F2 of disjoint sets, set
E =

⋃
n∈N E(n) , observe that Eω1 =

⋃
n∈N(E(n))ω1 is again a disjoint union, and

µ(E) =
∫

Ω1

µ2(Eω1) dµ1(ω1) =
∑

n∈N

∫

Ω1

µ2

(
(E(n))ω1

)
dµ1(ω1) =

∑

n∈N

µ(E(n)) .

Interchanging the rôles of the two indices in the preceding argument, we see that the set-
function µ̃(E) :=

∫
Ω2

µ1(Eω2) dµ2(ω) is a finite measure on F1 ⊗ F2 that shares all the
properties of µ ; from uniqueness, µ̃ ≡ µ .

• If µ1 , µ2 are only σ−finite, we can write Ω1 ×Ω2 as a countable, increasing union of
disjoint rectangles Ω(n)

1 ×Ω(n)
2 in R , whose sides have finite measures. It suffices then to

establish the result on each such rectangle, which we have already done; then pass to the
limit, invoking the Monotone Convergence Theorem. ¦

PROOF OF THEOREM 6.2 : If f = χE for some E ∈ F1 ⊗ F2 , then hi = gi and
the result reduces to Theorem 6.1. Thus the result holds for simple functions. For general
f ∈ L+ , let {f (n)}n∈N ⊂ L+ increase pointwise to f ; then h

(n)
i ↑ hi pointwise (in

particular, hi is measurable), and
∫
Ωi

hi dµi = limn

∫
Ωi

h
(n)
i dµi = limn

∫
Ω

f (n) dµ =∫
Ω

f dµ , i = 1, 2 . ¦

PROOF OF THEOREM 6.3 : If the function f ∈ L1(µ1 ⊗ µ2) is non-negative, we have
hi < ∞ , µi−a.e. (that is, fωi ∈ L1(µj) for µi−a.e. ωi ∈ Ωi), as well as hi ∈ L1(µi) , for
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each i 6= j . In the general case, the result follows by applying Tonelli’s theorem to each
of f+ , f− separately. ¦

6.2 Remark: It is straightforward to extend the above results to several dimensions: if
(Ωi,Fi, µi), i = 1, · · · , d are σ−finite measure spaces, then there is a unique measure µ

on the product σ-algebra F =
⊗d

i=1 Fi , such that

µ (E1 × · · · × Ed) = µ1(E1) · · ·µd(Ed) , Ei ∈ Fi , i = 1, · · · , d . (6.1)d

This measure is denoted µ = ⊗d
i=1µi and is called the product measure of µ1, · · · , µd.

Similarly,
( ∏d

i=1 Ωi,
⊗d

i=1 Fi,⊗d
i=1µi

)
is then called the product measure space of

(Ωi,Fi, µi) , i = 1, · · · , d . With the obvious modifications in notation, this measure has
the properties set out in Theorems 6.1-6.3. In addition to the commutativity property

(µ2 ⊗ µ1)(DE) = (µ1 ⊗ µ2)(E) with DE := { (ω1, ω2) | (ω2, ω1) ∈ E } , for E ∈ E

implied by Theorem 6.1, the product measure is also associative:

µ1 ⊗ (µ2 ⊗ µ3) = (µ1 ⊗ µ2)⊗ µ3 .

6.3 Remark: If we take (Ωi,Fi) ≡ (R,B(R)), ∀ i = 1, · · · , d above, and Fi(·) =
µi((−∞, ·]) is the distribution function on R corresponding to the measure µi , then the
distribution function F (·) = µ((−∞, ·]) induced on Rd by the product-measure µ (notation
of §1.4.C), coincides with the product distribution function of Definition 4.3.

♣ The Tonelli-Fubini Theorems 6.2, 6.3 are most usefully invoked “in concatenation”, in
order to justify inverting the order of integration in double integrals of the form

∫

Ω1

∫

Ω2

f dµ1 dµ2 =
∫

Ω

f d(µ1 ⊗ µ2) .

Typically, one verifies first that
∫
Ω
|f | d(µ1 ⊗ µ2) is finite, using Tonelli’s theorem to

evaluate this as a double integral – and then one applies Fubini’s theorem to conclude∫
Ω1

(∫
Ω2

f dµ2

)
dµ2 =

∫
Ω2

(∫
Ω1

f dµ1

)
dµ2.

As a (very good) rule of thumb, whenever you come across a double integral, invert the

order of integration! Just do it; then worry about justifying what you did, using Theorems
6.2 and 6.3 as explained above. The following Propositions and Exercises illustrate the
situation; for additional illustrations, see the proof of Theorem 2.2.2.
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6.1 Proposition: Boundedness of Linear Operators on Lp−spaces. Let (X,F , µ)
and (Y,G, ν) be σ-finite measure spaces, and K : X × Y → R an (F ⊗ G)−measurable
function. Suppose that, for some C ∈ [0,∞) , we have
(i)

∫
X
|K(x, y)| dµ(x) ≤ C , for ν−a.e. y ∈ Y ,

(ii)
∫

Y
|K(x, y)| dν(y) ≤ C , for µ−a.e. x ∈ X .

Then for every f ∈ Lp(ν) , 1 ≤ p ≤ ∞ , the integral

(Tf)(x) :=
∫

Y

K(x, y)f(y) dν(y)

converges absolutely for µ−a.e. x ∈ X ; the function Tf is well-defined and in Lp(µ);
and we have the Generalized Young’s Inequality

||Tf ||p ≤ C ||f ||p .

Proof : With 1 < p < ∞ and (1/p)+(1/q) = 1 , Hölder’s inequality gives that |Tf(x)|
is dominated by

∫

Y

|K(x, y)f(y)| dν(y) =
∫

Y

|K(x, y)|1/q · |K(x, y)|1/p |f(y)| dν(y)

≤
(∫

Y

|K(x, y)| dν(y)
)1/q

·
(∫

Y

|K(x, y)| |f(y)|p dν(y)
)1/p

≤ C1/q

(∫

Y

|K(x, y)| |f(y)|p dν(y)
)1/p

for µ−a.e. x ∈ X and, by Tonelli’s theorem,
∫

X
|Tf(x)|p dµ(x) is dominated by

∫

X

(∫

Y

|K(x, y)f(y)| dν(y)
)p

dµ(x) ≤ C(p/q)

∫

X

∫

Y

|K(x, y)| |f(y)|pdν(y) dµ(x)

≤ C(p/q)

∫

Y

|f(y)|p
(∫

X

|K(x, y)| dµ(x)
)

dν(y) ≤ C1+(p/q)

∫

Y

|f(y)|p dν(y) < ∞ .

Now Fubini’s theorem implies that, for µ−a.e. x ∈ X, the mapping y 7→ K(x, y)f(y) is
in L1(ν) and so Tf(x) is well-defined; furthermore,

∫
X
|Tf(x)|p dµ(x) ≤ Cp (||f ||p)p.

For p = 1 a similar proof works, which uses only (i); for p = ∞ the conclusion is
immediate, and relies only on (ii). ♦

6.3 EXERCISE : CONVOLUTION, FOURIER TRANSFORM, AND THE
YOUNG INEQUALITY. For any two measurable functions f : Rd → R and g :
Rd → R , the convolution f ∗ g of f and g is the function defined by

(f ∗ g)(x) :=
∫

Rd

f(x− y) g(y) dy =
∫

Rd

g(x− y) f(y) dy (6.6)
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for all x ∈ Rd such that the integral on the right-hand-side is well-defined and finite. For
instance, if f ∈ Lp(Rd) and q ∈ Lq(Rd) with p ≥ 1, (1/p) + (1/q) = 1 , then the Hölder
inequality guarantees that (f ∗ g)(x) is well-defined and finite for every x ∈ Rd .
(i) Assuming that all integrals in question exist, show that

f ∗ g = g ∗ f ,
(
f ∗ g

) ∗ h = f ∗ (
g ∗ h

)
, and supp

(
f ∗ g

) ⊆ supp
(
f
)

+ supp
(
g
)
,

where K + L := {x + y ; x ∈ K , y ∈ L} . We are denoting here by supp(f) the support

of the function f , that is, the smallest closed set outside of which the function vanishes.
(ii) Show that, for every g ∈ L1(Rd) and f ∈ Lp(Rd) for some 1 ≤ p ≤ ∞ , the
convolution (f ∗ g)(x) of (6.6) is well-defined for λ−a.e. x ∈ Rd , and satisfies Young’s
inequality

||f ∗ g||p ≤ ||g||1 ||f ||p .

(iii) With i =
√−1 , the Fourier Transform of f ∈ L1(Rd) is the function f̂ : Rd → C

defined by

f̂(ξ) =
∫ ∞

−∞
e i〈ξ,x〉 f(x) dx , ξ ∈ Rd . (6.7)

Show that f̂(·) is uniformly continuous, and uniformly bounded: supξ∈Rd |f̂(ξ)| ≤ ||f ||1 <

∞ . Show also that the Fourier transform of the convolution is the product of the Fourier

transforms, in the sense that

f̂ ∗ g = f̂ · ĝ holds for every f ∈ L1(Rd) , g ∈ L1(Rd) .

6.2 Proposition: Minkowski Inequality for Integrals. Let (X,F , µ) and (Y,G, ν)
be σ-finite measure spaces, and f : X × Y → R an (F ⊗ G)−measurable function.
(i) If f ≥ 0 and 1 ≤ p < ∞, we have

[∫

X

(∫

Y

f(x, y) dν(y)
)p

dµ(x)
]1/p

≤
∫

Y

[∫

X

(f(x, y))p
dµ(x)

]1/p

dν(y) =: F .

(ii) Suppose that 1 ≤ p ≤ ∞, and that the function y 7→ ||f(·, y)||p is in L1(ν) . Then
f(x, ·) ∈ L1(ν) for µ−a.e. x ∈ X, the function x 7→ ∫

Y
f(x, y) dν(y) is in Lp(µ) , and

we have the Minkowski-type inequality

∣∣∣
∣∣∣
∫

Y

f(·, y) dν(y)
∣∣∣
∣∣∣
p
≤

∫

Y

||f(·, y)||p dν(y) = F .
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Proof : If p = 1, then part (i) is just Tonelli’s theorem. For 1 < p < ∞ , part (i) is again
obvious, if F = ∞; with F < ∞, let (1/p) + (1/q) = 1, take g ∈ Lq(µ) and observe that

∫

X

[∫

Y

f(x, y) dν(y)
]
|g(x)| dµ(x) =

∫

Y

[∫

X

f(x, y) |g(x)| dµ(x)
]

dν(y)

≤
∫

Y

[
||g||q ·

(∫

X

(f(x, y))p
dµ(x)

)1/p
]

dν(y)

from Tonelli’s theorem and the Hölder inequality. In other words, with the notation
h(x) :=

∫
Y

f(x, y) dν(y) we have

Iµ(h|g|) =
∫

X

h(x) |g(x)| dµ(x) ≤ F · ||g||q , ∀ g ∈ Lq(µ) .

Now the “converse Hölder inequality” of Exercise 5.10 (ii) gives h ∈ Lp(µ) and ||h||p ≤ F ,
which is part (i) of the Proposition; whereas Fubini’s theorem (with f replaced by |f |)
yields part (ii). For p = ∞, part (ii) follows from the monotonicity of the integral. ¦

6.4 EXERCISE : LAYERED REPRESENTATION. Let ν be a measure on B(R)
with N(u) := ν([0, u)) < ∞ , ∀u > 0 , and suppose that g : Ω → [0,∞) is a Borel-
measurable function on the σ−finite measure space (Ω,F , µ) . Then with the shorthand
notation µ(g > u) ≡ µ ({ω ∈ Ω | g(ω) > u}) already used in (2.14), show that

∫

Ω

N(g(ω)) dµ(ω) =
∫

[0,∞)

µ(g > u) dν(u) . (6.8)

In particular, if dν(u) = pup−1du for some p > 0 , then

∫

Ω

(g(ω))p dµ(ω) = p

∫ ∞

0

up−1 µ(g > u) du . (6.9)

6.5 Exercise : Potential Theory on the Line. For any measure µ on B(R) , define
its potential

(Pµ)(x) :=
∫

R

|x− y| dµ(y) , x ∈ R . (6.10)

(a) Show that this recipe defines a convex function Pµ , which is real-valued provided that
we have

∫
R

(
1 + |y|) dµ(y) < ∞ .

(b) Suppose that µ is a probability measure with
∫
R
|y| dµ(y) < ∞ ,

∫
R

y dµ(y) = 0 , and
denote by F (·) := µ ((−∞, ·]) its distribution function and by δ0(A) := χA(0) , A ∈ B(R)
the Dirac measure at the origin. Show that Pµ−Pδ0 is nonnegative and tends to zero as
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|x| → ∞ ; furthermore, the area between the two curves (Pµ)(·) and (Pδ0)(·) is equal to
the ‘second moment’

∫∞
−∞ y2 dµ(y) of the measure µ . More precisely, we have

(Pµ)(x) =
∫ x

−∞
F (y) dy +

∫ ∞

x

(1− F (y)) dy , x ∈ R ,

(Pµ)(x)− (Pδ0)(x) = (Pµ)(x)− |x| = 2
∫ ∞

x

(1− F (y)) dy , for x ≥ 0 ,

= 2
∫ x

−∞
F (y) dy , for x ≤ 0 .

and ∫ ∞

−∞
(Pµ− Pδ0)(x) dx =

∫ ∞

−∞
y2 dµ(y) .

6.6 Exercise : Burkholder’s Moderate-Function Inequality. A function F :
(0,∞) → (0,∞) is called moderate, if it is continuous, increasing with F (0+) = 0 ,
F (∞) = ∞ , and satisfies

sup
x>0

(
F (αx)
F (x)

)
< ∞ , for some (and then for every) α > 1 . (6.11)

Suppose that f, g are non-negative measurable functions on a finite measure space
(Ω,F , µ) , that satisfy

µ ( f > βλ , g ≤ δλ ) ≤ ψ(δ) · µ(f > λ) ; ∀ δ > 0 , λ > 0 (6.12)

for some β > 1 and some ψ : (0,∞) → (0,∞) continuous, increasing with ψ(0+) = 0 .
Show that for every moderate function F , there exists a real constant C ≡ Cβ,ψ,F (which
does not depend on f or g), such that

I(F (f)) ≤ C · I(F (g)) . (6.13)

(Hint: Integrate both sides of (6.12) with respect to dF (λ) , and use Fubini-Tonelli.)

6.7 Exercise : Completion of the Product Space. Suppose that the two component
measure spaces (Ωi,Fi, µi), i = 1, 2 in Theorems 6.1-6.3 are complete. Then the product
space (Ω,F , µ) ≡ (Ω1 × Ω2,F1 ⊗ F2, µ1 ⊗ µ2) is not necessarily complete. Nonetheless,
one can replace in these results the product measure space by its completion (Ω, F̄ , µ̄) as
in Exercise 3.4, and the conclusions will still hold.
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A: SMOOTH FUNCTIONS, APPROXIMATION OF THE IDENTITY

6.1 Definition : Smooth Functions. For every n ∈ N we shall denote by Cn(R) the
space of functions f : R → R which are continuous along with their derivatives Dmf(·) ≡
f (m)(·) of all orders m = 1, · · · , n . The intersection C∞(R) :=

⋂
n∈N Cn(R) is then

the space of infinitely differentiable functions.

Similarly, for every n ∈ N we shall denote by Cn
↓ (R) the subset of Cn(R) that

consists of “rapidly decreasing functions”, i.e., satisfying lim|x|→∞
(
xk Dmf(x)

)
= 0 for

all k ∈ N , m = 0, 1, · · · , n .
The set C∞↓ (R) :=

⋂
n∈N Cn

↓ (R) will be called the Schwartz space of infinitely
differentiable, rapidly decreasing functions. Clearly, for every f ∈ C∞↓ (R) , we have
Dmf ∈ Lp(R) for all 1 ≤ p < ∞ ,m ∈ N0 .

Finally, we shall denote by Cn
∗ (R) , C∞∗ (R) the subsets of Cn

↓ (R) , C∞↓ (R) , respec-
tively, that consist of functions with ‘compact support’ (that is, with f ≡ 0 outside a
compact set K ⊂ R).

Observe that the function x 7→ e−x2
belongs to the Schwartz space C∞↓ (R) , but

the function x 7→ 1/(1 + x2) does not; neither does the function x 7→ e−|x| , though for a
different reason. The next exercise establishes the ‘smoothing properties’ of the convolution
operation in (6.6).

6.8 Exercise : Approximation to the Identity. Given a function ϕ ∈ L1(Rd) with
||ϕ||1 = 1 , consider ϕε(x) ≡ ε−1 ϕ

(
x ε−1

)
, x ∈ R for each ε > 0 , so that ||ϕε||1 = 1 .

(i) For every f ∈ Lp(Rd) with 1 ≤ p < ∞ , we have in the notation of (6.6) for the
convolution: (f ∗ ϕε) −→ f in Lp(Rd) as ε ↓ 0 .

(ii) If f ∈ L∞(Rd) is uniformly continuous on a set B , then (f ∗ϕε) −→ f uniformly
on B , as ε ↓ 0 .

(iii) Suppose that ϕ ∈ C∞↓ (Rd) , and consider f ∈ Lp(Rd) for some 1 ≤ p ≤ ∞ . Then
(f ∗ ϕ) ∈ C∞(Rd) , and

Dm(f ∗ ϕ) = f ∗ (
Dmϕ

)
, ∀ m ∈ N0 . (6.14)

These same conditions also hold for f locally in Lp(Rd) , under the stronger assump-
tion ϕ ∈ C∞∗ (Rd) .

6.9 Exercise : Approximation by Smooth Functions. The space C∞∗ (R) of
infinitely differentiable functions with compact support is dense in Lp(R) , ∀ 1 ≤ p < ∞ .

6.10 Exercise : Separability of Lp(Rd) . There exists a sequence {hn}n∈N of simple
functions on Rd , with the following property: For each 1 ≤ p < ∞ , each Ω ∈ B(Rd) ,
each f ∈ Lp(Rd) , and each ε > 0 , we have: ||f − hk||p < ε for some k ∈ N .
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B: PROBABILITY MEASURES ON INFINITE-DIMENSIONAL SPACES

Let us tackle now the question of constructing measures on infinite-dimensional spaces. We
start with an infinite set T (countable or not); for each t ∈ T we let Ωt = R, Ft = B(R) ,
and consider the canonical space Ω :=

∏
t∈T Ωt ≡ RT, consisting of all real-valued

functions ω : T → R on T. We also consider the class C∗ of finite-dimensional cylinder
sets, i.e., sets of the form

C = {ω ∈ Ω | (ω(t1), · · · , ω(tn)) ∈ A} with A ∈ B(Rn) , n ∈ N (6.15)

as well as the σ−algebra F := σ(C∗).
Now let Tn denote the set of finite sequences τ = (t1, · · · , tn), n ∈ N of distinct

n−tuples of elements in T , and set T := ∪n∈NTn . Suppose that, for each n ∈ N and
τ ∈ Tn , we have prescribed a probability distribution function Fτ : Rn → [0, 1] with cor-
responding Lebesgue-Stieltjes measure µτ ≡ µFτ on B(Rn). We say that {Fτ}τ∈T (re-
spectively, {µτ}τ∈T ) is a family of finite-dimensional probability distribution functions
(resp., of finite-dimensional distributions).

Here is the question of interest: given a family {Fτ}τ∈T as above, can we construct

a probability measure P on (Ω,F) so that

P[ ω ∈ Ω | (ω(t1), · · · , ω(tn)) ∈ A ] = µτ (A) , ∀ A ∈ B(Rn) (6.16)

holds for every τ = (t1, · · · , tn) ∈ T and n ∈ N ? In other words, can we put together a
probability measure P on Ω = RT when we are given all its finite-dimensional “marginal”
distributions {Fτ}τ∈T ?

If such a measure P exists, then it is fairly straightforward to see from (6.16) that the
following two Consistency Conditions (C.C.’s) have to be satisfied, for every n ∈ N :

(C.C.1) If ς = (ti1 , · · · , tin) is a permutation of τ = (t1, · · · , tn) ∈ Tn , then for any Borel
subsets A1, · · · , An of the real line we have: µτ

(∏n
j=1 Aj

)
= µς

(∏n
j=1 Aij

)
.

(C.C.2) If τ = (t1, · · · , tn) ∈ Tn and ς = (t1, · · · , tn, tn+1) , then µτ (B) = µς(B ×R) , for
any B ∈ B(Rn) .

The following result asserts that these conditions are not only necessary, but also sufficient
for the existence of such a probability measure P. The proof uses in a crucial manner
the regularity of each of the finite-dimensional distributions µτ , τ = (t1, · · · , tn) ∈ Tn on
B(Rn) for n ∈ N , as in Exercise 1.5.
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6.4 THEOREM : DANIELL-KOLMOGOROV. Let {Fτ}τ∈T be a given family of
finite-dimensional p.d.f.’s, and suppose that the family of corresponding finite-dimensional
distributions {µτ}τ∈T satisfies the Consistency Conditions (C.C.1), (C.C.2) above. Then
there exists a probability measure P on the canonical space (Ω,F) , such that (6.16) holds.

6.2 Example: Let {Fn}n∈N be a sequence of probability distribution functions on the
real line (with corresponding Lebesgue-Stieltjes measures µn ≡ µFn

, n ∈ N). We let
T = N , and consider the product probability distribution function

Fτ (x1, · · · , xn) := Ft1(x1) · · ·Ftn
(xn) , ∀ (x1, · · · , xn) ∈ Rn

for any τ = (t1, · · · , tn) ∈ T (recall Definition 4.3), with associated Lebesgue-Stieltjes
measure µτ ≡ µFτ =

⊗n
j=1 µtj on B(Rn). It is clear that the family {µτ}τ∈T

satisfies the Consistency Conditions of Theorem 6.4. According to this result, there exists
a probability measure P on the canonical space (Ω,F) ≡ (RN, σ(C∗)) such that

P[ ω ∈ Ω |ω(t1) ∈ A1 , · · · , ω(tn) ∈ An ] = µt1(A1) · · ·µtn(An) (6.17)

=
n∏

j=1

P[ω ∈ Ω |ω(tj) ∈ Aj ]

holds for any Borel subsets A1, · · · , An of the real line, n ∈ N , and (t1, · · · , tn) ∈ T .
Under this probability measure, the coördinate mappings Xn(ω) := ωn , n ∈ N are

independent random variables with prescribed (one-dimensional marginal) distributions
P[ Xn ≤ x ] = Fn(x) , x ∈ R .

PROOF OF THEOREM 6.4: For any cylinder set C ∈ C∗ of the form (6.15), we set
P(C) = µτ (A) where τ = (t1, · · · , tn) ∈ Tn and A ∈ B(Rn) . We leave it as an excercise,
to check that the two consistency conditions (C.C.1), (C.C.2) guarantee P is well-defined
and finitely-additive on C∗ by this recipe, and P(Ω) = 1. If we can show that P is also
countably additive on C∗, then the Carathéodory-Hahn Theorems 3.1, 3.3 will guarantee
that P can be extended to a probability measure on F = σ(C∗) .

To this end, suppose that {Bk}k∈N are disjoint sets in C∗ with B := ∪k∈NBk ∈ C∗,
set Cm := B \ (∪m

k=1Bk) so that P(B) = P(Cm) +
∑m

k=1 P(Bk) for each m ∈ N, and
observe ∩m∈NCm = ∅ . Countable additivity will follow, as soon as we manage to show

` := lim
m→∞

P(Cm) = 0 . (6.18)

The sequence {Cm}m∈N is decreasing, so the limit in (6.18) exists. We shall assume that
` > 0 , and try to arrive at a contadiction.

12



Step 1: Monotonicity. There exists a decreasing sequence {Dm}m∈N ⊂ C∗ with the
property ∩m∈NDm = ∅ and limm→∞P(Dm) = ` > 0 , of the form

Dm = {ω ∈ Ω | (ω(t1), · · · , ω(tm)) ∈ Am} for some Am ∈ B(Rm) ,

such that τm = (t1, · · · , tm) ∈ Tm is an extension of (t1, · · · , tm−1) ∈ Tm−1 for every
m ≥ 2 .

To see this, observe that since Ck+1 ⊆ Ck , each of the sets Ck is of the form:
Ck = {ω ∈ Ω | (ω(t1), · · · , ω(tmk

)) ∈ Amk
} for some Amk

∈ B(Rmk) , such that Amk+1 ⊆
Amk

×Rmk+1−mk and (t1, · · · , tmk+1) is an extension of (t1, · · · , tmk
) . Define

D1 = {ω ∈ Ω |ω(t1) ∈ R} , · · · , Dm1−1 =
{
ω ∈ Ω | (ω(t1), · · · , ω(tm1−1)) ∈ Rm1−1

}

and Dm1 = C1 ; then Dm1+1 = {ω ∈ Ω | (ω(t1), · · · , ω(tm1), ω(tm1+1)) ∈ Am1 ×R} , · · ·,
Dm2−1 =

{
ω ∈ Ω | (ω(t1), · · · , ω(tm1), ω(tm1+1), · · · , ω(tm2−1)) ∈ Am1 ×Rm2−m1−1

}
and

Dm2 = C2 . Continuing this procedure, we see ∩m∈NDm = ∩m∈NCm = ∅ .

Step 2: Regularity. From Exercise 1.5, there exists a closed set Fm ⊆ Am such that
µτm(Am \Fm) < ε 2−m for every m ∈ N. Intersect this Fm with a sufficiently large closed
ball to obtain a compact set Km such that

Em := {ω ∈ Ω | (ω(t1), · · · , ω(tm)) ∈ Km} ⊆ Dm , P(Dm \Em) = µτm(Am \Km) <
ε

2m
.

This sequence {Em}m∈N may not be decreasing, so we define Ẽm = ∩m
k=1Ek and note

that Ẽm = {ω ∈ Ω | (ω(t1), · · · , ω(tm)) ∈ K̃m} with

K̃m =
(
K1 ×Rm−1

) ∩ (
K2 ×Rm−2

) ∩ · · · (Km−1 ×R) ∩Km

a compact set and µτm(K̃m) = P(Ẽm) > 0 , because

P(Ẽm) = P(Dm)−P(Dm \ Ẽm) = P(Dm)−P (∪m
k=1(Dm \ Ek))

≥ P(Dm)−P (∪m
k=1(Dk \ Ek)) ≥ `−

m∑

k=1

`

2k
> 0 .

Step 3: Diagonalization. We have just shown that K̃m is non-empty, so we may choose
an element

(
x

(m)
1 , · · · , x(m)

m

) ∈ K̃m for every m ∈ N . The resulting sequence
{
x

(m)
1

}
m∈N

is contained in the compact set K̃1 , so it must contain a subsequence
{
x

(mk)
1

}
k∈N

that

converges to some x1 ∈ K̃1 . By the same token,
{(

x
(mk)
1 , x

(mk)
2

)}
k∈N

is a sequence in the

compact set K̃2 , so it too contains a subsequence that converges to some (x1, x2) ∈ K̃2 .
Continuing this way we can put together a sequence of real numbers (x1, x2, · · ·) such that
(x1, x2, · · · , xm) ∈ K̃m for each m ∈ N . In other words,

S = {ω ∈ Ω |ω(ti) = xi , i ∈ N } ⊂ Ẽm ⊆ Dm , ∀ m ∈ N ,

contradicting ∩m∈NDm = ∅ . This shows that (6.18) holds. ¦
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