
CHAPTER 2. ELEMENTS OF PROBABILITY

Probability Theory is the branch of Analysis that deals with the study of random
phenomena. As we shall see in the next section, it has its own vocabulary and notation.
This is due partly to the circumstances of the subject’s development – starting in the
16th and 17th centuries, long before the connection with measure and integration was
made explicit by Kolmogorov in the early 1930’s – and partly to the fact that the central
problems, motivation, ideas, techniques, and intuitive content of Probability are distinctly
its own. In this chapter we shall discuss only the very basic aspects of this subject,
including notions such as independence and conditional expectations and results such as
the Law of Large Numbers, the Central Limit Theorem and Cramér’s Theorem on “Large
Deviations”. We shall continue the development of this subject in subsequent chapters.

2.1. PROBABILITY SPACES AND RANDOM VARIABLES

A probability space is a measure space (Ω,F ,P) with total mass P(Ω) = 1. The set Ω
is now called the “sample space”; it can be thought of as representing the collection of
all possible outcomes of a random experiment, whose evolution is not possible to predict
in advance with certainty. The subsets of Ω in the σ-algebra F are called “events”, and
the measure P assigns to each of them a number in the interval [0, 1] that represents the
“probability of its occurrence”.

Within this framework, a random vector is just a measurable, real-valued function
X : Ω → Rd ; if d = 1, we say that X is a random variable. The quantity X(ω)
represents a vector of numerical characteristics assigned to the outcome ω ∈ Ω of our
random experiment, that we happen to be interested in. The probability measure “induced
by X on the Borel subsets of Rd ”, namely

µX(B) := P
({ω ∈ Ω |X(ω) ∈ B}) ≡ P(X ∈ B) = (P ◦X−1)(B) , B ∈ B(Rd) , (1.1)

is often called the distribution of the random vector X . This measure generates the
probability distribution function

FX(x) := µX((−∞, x]) = P[X ≤ x] , x ∈ Rd (1.2)

of the random vector X , in the notation of §1.4.C. It is clear that this function FX : Rd →
[0, 1] satisfies the conditions of Definition 1.4.2 (or of Definition 1.4.1, in the case of d = 1).
We say that two random vectors X and Y are identically distributed, if they induce the
same measures (µX = µY in the notation of (1.1)) on the on the Borel subsets of Rd .
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1.1 Proposition : Skorohod Construction. For any given probability distribution
function F : Rd → [0, 1] , there exists a probability space (Ω,F ,P) and a random vector
X : Ω → Rd , such that FX(·) ≡ F (·) . In the special case d = 1, the mappings

X+(ω) := inf{x |F (x) > ω} , X−(ω) := inf{x |F (x) ≥ ω} , 0 ≤ ω ≤ 1 (1.3)

or equivalently

X+(ω) = sup{x |F (x) ≤ ω} , X−(ω) := sup{x |F (x) < ω} ,

on the probability space (Ω,F ,P) = ([0, 1],B([0, 1]), λ) are random variables with proba-
bility distribution functions FX±(·) ≡ F (·) .

Proof : An obvious choice is to take X the identity mapping on the space (Rd,B(Rd), µF )
where µF is the Lebesgue-Stieltjes measure of Section 1.4 corresponding to F , and note
FX(x) = P(X ∈ (−∞, x]) = µF ((−∞, x]) = F (x), ∀ x ∈ Rd.

For the one-dimensional case d = 1, there is another, very useful, construction due
to A.V. Skorohod. One looks at the right- and left-continuous inverses of F , namely the
mappings X± of (1.3) on the space (Ω,F ,P) ≡ ([0, 1],B([0, 1]), λ) (see Figure), and
notices the implications ω ≤ F (x) ⇔ X−(ω) ≤ x , ω < F (x) ⇒ X+(ω) ≤ x , valid
for all ω ∈ [0, 1], x ∈ R. This implies

P[X− ≤ x] = λ
({ω |ω ≤ F (x)}) = F (x) ≤ P[X+ ≤ x] , ∀ x ∈ R .

Of course X+ ≥ X−, so {X+ 6= X−} = ∪q∈Q{X− ≤ q < X+} . But we have

P[X− ≤ q < X+] = P
[{X− ≤ q} \ {X+ ≤ q}] = F (x)−P[X+ ≤ x] , ∀ q ∈ R ,

and thus P[X+ 6= X−] = 0 , because Q is countable. Therefore, P[X+ ≤ x] =
F (x) , ∀x ∈ R . ¦

For any random variable Y ∈ L1, the integral
∫
Ω

Y dP is denoted by E(Y ) and is
called the expectation of Y . If Y ∈ Lk for some k > 0, the integrals E(Y k) =

∫
Ω

Y k dP
and E(|Y |k) =

∫
Ω
|Y |k dP are called kth moment and the kth absolute moment of

Y , respectively. If Y ∈ L2 , the non-negative quantity

Var(Y ) := E
(
Y −E(Y )

)2

= E(Y 2)− (
E(Y )

)2

is called the variance of Y ; it vanishes if and only if Y is “degenerate”, in the sense
P[Y = y] = 1 , for some y ∈ R . The square-root

√
Var(Y ) of the variance is called

standard deviation. If Y ,Z are two random variables in L2 , we define their covariance

Cov(Y,Z) := E
[
(Y −E(Y )) · (Z −E(Z))

]
= E(Y Z)−E(Y )E(Z) .
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We say that the variables are uncorrelated, if their covariance is zero.

1.2 Proposition: If X is a random vector with values in Rd and h : Rd → R a
measurable function, then h(X) is a random variable; and if this random variable is
integrable, its expectation can be written in terms of the distribution of the random vector
X and in the notation of (1.4.2)′, as

E[h(X)] =
∫

Rd

h dµX =
∫ ∞

−∞
· · ·

∫ ∞

−∞
h(x1, · · · , xd) dF (x1, · · · , xd) . (1.4)

Proof : This is obvious from the definition of µX , if h = χE is the indicator function of
some Borel set E ∈ B(Rd) . Thus (1.4) is also valid for simple functions; and by the usual
approximation technique, also for nonnegative, as well for µX−integrable, functions.

1.1 Remark: For any given ξ ∈ Rd we may choose the real and imaginary parts of the
function h(x) := exp( i〈ξ, x〉) = exp( i

∑d
j=1 ξjxj) x ∈ Rd where i =

√−1 . Then the
function ϕX : Rd → C defined by

ϕX(ξ) := E
[
e i〈ξ,X〉

]
=

∫ ∞

−∞
· · ·

∫ ∞

−∞
e i〈ξ,x〉 dF (x1, · · · , xd)

is called the characteristic function of the random vector X. We shall see in Chapter 3
that ϕX(·) determines uniquely the distribution function F (·) .

1.1 Definition: A probability distribution function F (·) (as well as a random variable
Y with FY (·) ≡ F (·)) is called
(i) absolutely continuous, if it is of the form F (x) =

∫ x

−∞ f(u) du , x ∈ R for some
meassurable “probability density-function” f : R → [0,∞) with

∫∞
−∞ f(u) du = 1 ;

(ii) purely discrete, if it is of the form F (x) =
∑

k∈K
u≤x

p(k) , x ∈ R , for some finite or

countably infinite set K ⊂ R and a “probability mass-function” p : K → [0,∞) with∑
k∈K p(k) = 1 . (Compare with Exercise 1.7.2.)

1.1 Example: The following are examples of absolutely continuous distributions (with
densities f : R → [0,∞) as listed):

• Exponential: f(x) = λ e−λxχ(0,∞)(x) , for some λ > 0 .

• Gamma Γ(λ, r): f(x) = λr

Γ(r) xr−1 e−λx χ(0,∞)(x) , with parameters λ > 0 and r > 0 .

Here Γ(r) =
∫∞
0

xr−1 e−x dx is the Gamma function. The exponential is a special
case of this distribution, corresponding to r = 1 .

• Standard Normal N (0 , 1): f(x) = 1√
2 π

e−x2/2 .

• Normal N (m, σ2): f(x) = 1√
2 π σ2 e−(x−m)2 / 2σ2

, with parameters m ∈ R and σ2 > 0.
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• Uniform on [0, h]: f(x) = 1
h χ[0,h](x) , for some h > 0 .

• Uniform on [−h, h]: f(x) = 1
2 h χ[−h,h](x) , for some h > 0 .

• Double Exponential: f(x) = (1/2) e−|x| .

• Cauchy: f(x) =
(
π (1 + x2)

)−1 .

• Triangular on [−1, 1]: f(x) = (1− |x|) χ[−1,1](x) .

• Fejér: f(x) = 1−cos x
π x2 .

• Logistic: f(x) = e−x/(1 + e−x)2 .

1.2 Example: The following are examples of purely discrete distributions (with mass-
functions p(·) as listed):

• Dirac measure δa : p(a) = 1 for some a ∈ R .

• Bernoulli: p(a) = p , p(b) = 1− p =: q for some p ∈ (0, 1) and a , b ∈ R .

• Symmetric Bernoulli: p(b) = p(−b) = 1/2 , for some b ∈ (0,∞) .

• Binomial B(n, p) : p(k) = (n! /k! (n− k)!) · pk (1− p)n−k , k = 0, · · · , n ,
with parameters n ∈ N and p ∈ (0, 1) .

• Poisson: p(k) = e−λ λk

k! , k = 0, 1, · · · , for some λ > 0 .

• Geometric: p(k) = p (1− p)k−1 , k = 1, 2, · · · , for some p ∈ (0, 1) .

1.1 Exercise: Show by example, that (very!) different random variables can have the
same distribution.

1.2 Exercise : Layered representation of the expectation. For any random vari-
able Z : Ω → [0,∞) , we have

E(Z) =
∫ ∞

0

P(Z > u) du ≤
∞∑

n=0

P(Z > n) ≤ 1 + E(Z) . (1.5)

(Hint: Write Z =
∫∞
0

χ{Z>u} du , and then use Fubini-Tonelli; recall Exercise 1.6.4.)

1.3 Exercise: For the distributions of Examples 1.1 and 1.2, compute the expectation,
variance, and moments of all orders, wherever these exist.

1.4 Exercise: Show that the distribution µX(·) = P(X ∈ · ) of a random vector
X : Ω → Rd as in (1.1), is determined uniquely by knowledge of the expectations

E[Φ(X)] =
∫

Ω

Φ(X(ω)) dP(ω) =
∫

Rd

Φ dµX

for all bounded, continuous functions Φ : Rd → R .
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1.5 Exercise: On a given probability space, let G be a subspace of the Hilbert space
L2(P) whose closure does not contain the constant 1 , and denote by π : L2(P) → G⊥
the projection-operator on G⊥ :=

{
Z ∈ L2(P) |E(Zg) = 0 , ∀ g ∈ G }

, the orthogonal
complement of G , namely:

E [(H − π(H)) · Z ] = 0 , for all H ∈ L2(P) , Z ∈ G⊥

(recall Theorem B.1, Appendix B).
(i) Show that 0 < E[π2(1)] = E[π(1)] ≤ 1 .
(ii) Establish the inequality

E[π2(H)] ≥ (E[π(H)] )2

E[π(1)]
, ∀ H ∈ L2(P) .

(iii) Show that D̃ := π(1)/E[π(1)] is the minimum-variance element of the (closed and
convex) set D :=

{
D ∈ G⊥ |E(D) = 1

}
.

1.6 Exercise: Inclusion-Exclusion Formulae. Let E1, E2, · · · be arbitrary events on
a probability space. Show that we have

P (∪n
i=1Ei) =

n∑

i=1

P(Ei)−
∑

i<j

P(Ei∩Ej)+
∑

i<j<k

P(Ei∩Ej∩Ek)− · · ·+ (−1)n P (∩n
i=1Ei) .

(Hint: Argue that χ∪n
i=1Ei = 1 −∏n

i=1(1 − χEi) ; then expand the right-hand side and
take expectations.)

1.7 Exercise: Bonferroni Inequalities. Let E1, E2, · · · be arbitrary events on a
probability space. Show that we have

P (∪n
i=1Ei) ≤

n∑

i=1

P(Ei)

P (∪n
i=1Ei) ≥

n∑

i=1

P(Ei)−
∑

i<j

P(Ei ∩ Ej)

P (∪n
i=1Ei) ≤

n∑

i=1

P(Ei)−
∑

i<j

P(Ei ∩ Ej) +
∑

i<j<k

P(Ei ∩ Ej ∩ Ek)

and so on: if we stop the inclusion/exclusion formula of the right-hand side after an even
(odd) number of steps, we get a lower (upper) bound.

1.8 Exercise: Suppose the real-valued random variables X , Y are identically distributed
and we have X ≥ Y a.e. Show then X = Y a.e.
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