
2.2. INDEPENDENCE AND STATIONARITY

For a fixed event F in a probability space (Ω,F ,P) with P(F ) > 0 , we define the
conditional probability measure given F by

PF (E) :=
P(E ∩ F )

P(F )
, E ∈ F . (2.1)

Now suppose that for some event E ∈ F we have PF (E) = P(E) , i.e., that knowledge
about the occurrence (or not) of the event F does not change the probability assigned by
the measure P to E. Or equivalently, that

P(E ∩ F ) = P(E)P(F ) , (2.2)

a relation which is symmetric in E and F and unambiguous, even when the probabilities
P(E) or P(F ) vanish.

We say that the two events E, F are independent, if (2.2) holds. It is interesting
to check that, if this is the case, then E, F c (and Ec, F as well as Ec, F c ), are also
independent.

For instance, if Ω → Ω is measure preserving and weakly mixing (Exercise 1.9.6),
then (2.2) holds for every F ∈ F and every T−invariant set E ∈ F (i.e., for which
T−1E = E holds mod. P ).

2.1 DEFINITION: INDEPENDENT EVENTS, RANDOM VARIABLES.
(i) The events in an arbitrary family E = {Eα}α∈A are said to be independent, if

P




n⋂

j=1

Eαj


 =

n∏

j=1

P(Eαj )

holds for any n ∈ N and any {α1, · · · , αn} ⊆ A.
(ii) The random variables in a family {Xα}α∈A are said to be independent, if the events
{X−1

α (Bα)}α∈A are independent for any family of Borel subsets {Bα}α∈A ⊆ B(R).
The condition (ii) is equivalent to µXα1 ,···,Xαn

= ⊗n
j=1µXαj

, or to the condition

FXα1 ,···,Xαn
(x1, · · · , xn) = FXα1

(x1) · · ·FXαn
(xn) , ∀ (x1, · · · , xn) ∈ Rn

for any n ∈ N and indices {α1, · · · , αn} ⊆ An .
(iii) Two collections G and H of events are called independent, if for every G ∈ G and
H ∈ H we have P(G ∩H) = P(G) ·P(H) .
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More generally, suppose E(1), E(2), · · · are collections of events; we say that these
collections are independent, if for any n ∈ N , any distinct integers i1, · · · , in , and any
events Ej ∈ E(j) , j ∈ {i1, · · · , in} we have

P (Ei1 ∩ · · · ∩ Ein
) =

n∏

k=1

P(Eik
) .

It is easily verified that if {Eα}α∈A are independent events, then {Fα}α∈A are also
independent, where Fα can be either Eα or Ec

α.
Similarly, if {Xα}α∈A are independent random variables and {fα}α∈A are Borel-

measurable functions, then {fα(Xα)}α∈A are also independent. Indeed, if {αj}n
j=1 ⊆ A is

any set of n indices, and {Bj}n
j=1 are Borel subsets in R, then

P




n⋂

j=1

{fαj (Xαj ) ∈ Bj}

 = P




n⋂

j=1

{Xαj ∈ f−1
αj

(Bj)}



=
n∏

j=1

P
(
Xαj ∈ f−1

αj
(Bj)

)
=

n∏

j=1

P
[
fαj (Xαj ) ∈ Aj

]
.

2.1 Lemma. Suppose that G and H are sub-σ-algebras of F ; and that I and J are
π-systems (Exercise 1.3.8) such that G = σ(I) , H = σ(J ) .

Then G and H are independent, if and only if I and J are independent.

Proof: Suppose I and J are independent; for any given I ∈ I , the set-functions

H 7→ P(I ∩H) , H 7→ P(I) ·P(H)

agree on J , are measures on (Ω,H) , and have the same total mass P(I) . By Exercise
1.3.8 they agree on H = σ(J ) , that is: P(I ∩H) = P(I) ·P(H) for every H ∈ H .

Thus, for any given H ∈ H, the set-functions

G 7→ P(G ∩H) , G 7→ P(G) ·P(H)

agree on I ; they are measures on (Ω,G) and have the same total mass P(H) . By the
same token as above, they they agree on G = σ(I) , to wit: P(G∩H) = P(G) ·P(H) for
every G ∈ G . ¦

2.1 Exercise: If {Xα}α∈A is a family of independent random variables, then the
σ−algebras generated by disjoint subfamilies are independent.
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2.2 Exercise: (a) Show by example, that three events can be pairwise-independent, but
not independent in the sense of Definition 2.1.(i).
(b) Any two square-integrable random variables that are independent, are also uncorre-
lated. However, show by example that two random variables can be uncorrelated, without
being independent.
(c) Show that for random variables X1, · · · , Xn in L2 , we have

Var(
∑n

j=1 Xj) =
∑n

j=1 Var(Xj) + 2
∑n

j=1

∑n
i=j+1 Cov(Xi, Xj) .

(d) Observe also, that if the Xj = χAj
, j = 1, · · · , n are indicators, then

Var(
∑n

j=1 Xj) ≤ E(
∑n

j=1 Xj) + 2
∑n

j=1

∑n
i=j+1 Cov(Xi, Xj) .

2.1 REMARK: In the context and with the notation of Example 1.6.2, let us take the
nth−coördinate mapping Xn(ω) ≡ ωn on the canonical space (Ω,F) = (RN, σ(C∗)),
for each n ∈ N. This way we create a sequence of random variables X1, X2, · · · with
prescribed probability distribution functions F1, F2, · · · , respectively, under the probability
measure P of (1.6.16).

If all these distributions are the same Fn ≡ F, ∀n ∈ N , then we say that the se-
quence X1, X2, · · · consists of independent, identically distributed (I.I.D.) random
variables, under P.

2.1 EXAMPLE : TOSSING A COIN. Let us place ourselves on the space (Ω,F) =
({0, 1}N, σ(C∗)), consisting of sequences ω = (ω1, ω2, · · ·) with ωj = 0 or 1 for every
j ∈ N. Such an ω can be visualized as an infinite sequence of tosses of a coin, with the
outcome “heads” (success) represented by 1, and the outcome “tails” (failure) represented
by 0. Suppose also that we assign the Bernoulli distribution

P[Xj = 1] = p , P[Xj = 0] = 1− p =: q , for some p ∈ (0, 1) (2.3)

to each of the coördinate mappings Xj(ω) = ωj , j ∈ N. Indeed, according to Example
1.6.2 and Remark 2.1 (see also Example 2.2 below), there exists a probability measure P
on the space (Ω,F) under which the random variables X1, X2, · · · are independent, with
common Bernoulli distribution P◦X−1

j ≡ P◦X−1
1 as in (2.3), ∀ j ∈ N. This corresponds

to the intuitive notion that “different tosses of the coin are independent”.
Consider now the number of successes (“heads”) Sn(ω) =

∑n
j=1 Xj(ω) obtained

during the first n tosses in the realization ω ∈ Ω of our experiment. It is not hard to see
that this random variable has the Binomial disribution

P[Sn = k] =
n!

k!(n− k)!
pk(1− p)n−k , k = 0, · · · , n . (2.4)
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It is also intuitively plausible that, as the number of tosses n becomes large, the proportion
of successes

Xn(ω) :=
Sn(ω)

n
should converge, in some sense, to the number p , (2.5)

the probability of success on each individual trial of our coin-tossing experiment. A state-
ment of the form (2.5) is a prototypical Law of Large Numbers; it will be justified in
Exercise 2.3 and Example 2.5 below. We discuss this issue more thoroughly in the next
section.

2.1 THEOREM : BOREL-CANTELLI LEMMATA. For a sequence {En}n∈N ⊆ F
of measurable sets in a measure space (Ω,F ,P), we have

(i) P(En, i.o.) = P( lim supn En) = 0 , if
∑

n∈N P(En) < ∞ .

(ii) If P(Ω) = 1 ,
∑

n∈N P(En) = ∞ , and the events {En}n∈N are independent, then

P(En, i.o.) = P
(

lim sup
n

En

)
= 1

or equivalently
∑

n∈N χEn = ∞ a.e.

In other words: if the measures of the sets decrease “very rapidly to zero”, we cannot
expect to “see too many of these sets”!

And if the probabilities of independent events “do not decrease too rapidly to zero”,
we can expect to “see these events realized quite often”.

PROOF : (i) Recall that {En, i.o.} := lim supn En =
⋂

k∈N Fk , where Fk := ∪n≥kEn.
Clearly, {Fk}k∈N is a decreasing sequence and F1 has finite measure, by assumption:
µ(F1) ≤

∑
n∈N µ(En) < ∞ . Then the continuity-from-above property (1.2.15) implies

P( lim supn En) = P
(⋂

k∈N Fk

)
= limk→∞P(Fk) ≤ limk→∞

∑
n≥k P(En) = 0. This

proves (i).

(ii) On the other hand, for any 1 ≤ k < m , we have

1−P

(
m⋃

n=k

En

)
= P

(
m⋂

n=k

Ec
n

)
=

m∏

n=k

P(Ec
n) =

m∏

n=k

(1−P(En)) ≤ exp

(
−

m∑

n=k

P(En)

)
,

where we have used independence and the elementary inequality 1−x ≤ e−x for 0 ≤ x ≤ 1.
Since

∑
n∈N P(En) = ∞, we find by letting m →∞ that 1−P(Fk) = 1−P

(⋃
n≥k En

)
=

0 , for every k ∈ N. But then the finiteness of the measure gives P( lim supn En) =
limk→∞P(Fk) = 1 , and (ii) is proved.
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2.2 THEOREM: (i) If the random variables X1, · · · , Xn are integrable and independent,
then

∏n
j=1 Xj ∈ L1 and we have

E




n∏

j=1

Xj


 =

n∏

j=1

E(Xj) .

(ii) If the random variables X1, · · · , Xn are square-integrable and pairwise-independent,
then they are also pairwise-uncorrelated and we have: Var

(∑n
j=1 Xj

)
=

∑n
j=1Var(Xj).

Proof : With f(x1, · · · , xn) = |x1 · · ·xn| we have, from Tonelli’s theorem:

E




n∏

j=1

|Xj |

 =

∫

Rn

f d




n⊗

j=1

µXj


 =

n∏

j=1

(∫

R

|xj | dµXj (xj)
)

=
n∏

j=1

E(|Xj |) < ∞ ,

so that
∏n

j=1 Xj ∈ L1 ; now apply Fubini’s theorem (same argument, with absolute values
removed).

For part (ii), observe that the random variables ξj := Xj −E(Xj), j = 1, · · · , n have
zero expectation and are pairwise independent, thus E(ξjξk) = E(ξj)E(ξk) = 0 for j 6= k;
therefore, the variables X1, . . . , Xn are pairwise-uncorrelated, and

Var




n∑

j=1

Xj


 = E




n∑

j=1

ξj




2

=
n∑

j=1

E(ξ2
j ) + 2

n∑

j=1

n∑

k=j+1

E(ξjξk) =
n∑

j=1

Var(ξj) . ¦

A: INSTANCES OF INDEPENDENCE

Here are a few examples of situations, where independence arises quite naturally and,
sometimes, unexpectedly.

2.2 EXAMPLE : RADEMACHER FUNCTIONS. It is well known that every
number ω ∈ [0, 1) has a binary expansion

ω =
ε1

2
+

ε2

22
+ · · · +

εn

2n
+ · · ·

where each ε is either 0 or 1. In order to ensure the uniqueness of this expansion, we
postulate that only expansions with infinitely many digits “0” are to be used; for instance,

5



let us agree to write 3
4 as 1

2 + 1
22 + 0

23 + 0
24 + · · · rather than 1

2 + 0
22 + 1

23 + 1
24 + · · · . With

this recipe the digits ε ∈ {0, 1} become functions of ω , so let us write more appropriately

ω =
ε1(ω)

2
+

ε2(ω)
22

+ · · · +
εn(ω)

2n
+ · · ·

or equivalently

1− 2ω =
∑

k∈N

rk(ω)
2k

︸ ︷︷ ︸
, where rk(ω) := 1− 2 εk(ω) , k ∈ N

are the so-called Rademacher functions.
For instance, ε1(ω) = 0 for 0 ≤ ω < 1

2 and ε1(ω) = 1 for 1
2 ≤ ω < 1 ; similarly,

ε2(ω) = 0 for 0 ≤ ω < 1
4 or 1

2 ≤ ω < 3
4 , and ε2(ω) = 1 for 1

4 ≤ ω < 1
2 or 3

4 ≤ ω < 1 ;
and so on. (Plot the first four functions in this sequence!)

Now let us do the simple trigonometry

sin x = 2 sin
( x

2

)
cos

( x

2

)
= 22 sin

( x

4

)
cos

( x

4

)
cos

( x

2

)

= · · · = 2n sin
( x

2n

) n∏

k=1

cos
( x

2k

)

and note that limn→∞ 2n sin(x2−n) = x , to obtain the generalized Vieta formula

sin x

x
=

∏

k∈N

cos
( x

2k

)

︸ ︷︷ ︸
.

But observe
∫ 1

0

e ix(1−2ω) dω =
sin x

x
,

∫ 1

0

exp
{

ix
rk(ω)

2k

}
dω = cos

( x

2k

)
,

so that generalized Vieta formula can be written as

∫ 1

0

exp

{
ix

∑

k∈N

rk(ω)
2k

}
dω =

sin x

x
=

∏

k∈N

cos
( x

2k

)
=

∏

k∈N

∫ 1

0

exp
{

ix
rk(ω)

2k

}
dω .

In particular, we get the Rademacher formula

∫ 1

0

∏

k∈N

exp
{

ix
rk(ω)

2k

}
dω =

∏

k∈N

∫ 1

0

exp
{

ix
rk(ω)

2k

}
dω

︸ ︷︷ ︸
,
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where an integral of products is expressed as a product of integrals, much like the situation
of Theorem 2.2.

Is this simply a coincidence, or is it perhaps symptomatic of some underlying “inde-
pendence” structure? To make some headway, let us endow Ω = [0, 1) with its σ−algebra
of Borel sets F = B([0, 1)) which measures εn for all n ∈ N , and with Lebesgue measure
λ . Fix an arbitrary sequence {dj}j∈N of 0’s and 1’s, and look at the sets

Ij := {ω ∈ Ω | εj(ω) = dj } , Kn :=
n⋂

j=1

Ij := {ω ∈ Ω | ε1(ω) = d1, · · · , εn(ω) = dn } ;

this latter is the set of numbers ω , in whose binary expansion the first n digits are
d1, · · · , dn and the rest are arbitrary:

ω =
d1

2
+

d2

22
+ · · · +

dn

2n
+

εn+1(ω)
2n+1

+
εn+2(ω)

2n+2
+ · · · .

Clearly, Kn is just an interval of length 2−n , whereas each Ij is an interval of length
1/2 . In other words,

λ
({ω ∈ Ω | ε1(ω) = d1, · · · , εn(ω) = dn }

)
= λ(Kn) = 2−n =

n∏

j=1

(1/2)

=
n∏

j=1

λ(Ij) =
n∏

j=1

λ
({ω ∈ Ω | εj(ω) = dj }

)
.

This is true for every choice of sequence {dj}j∈N and integer n , so the measurable func-
tions ε1, ε2 , · · · are independent “coin-tosses”, that is, P(εj = 0) = P(εj = 1) = 1/2 .
This means, in particular, that recourse to the Daniel-Kolmogorov theorem was not strictly
necessary for the construction needed in Example 2.1.

But then the Rademacher functions r1, r2 , · · · are also independent; thus so are
the functions

{
e ix2−krk

}
k∈N

. The Rademacher formula thus becomes a special case of
Theorem 2.2. ¦

2.3 EXAMPLE: INVERSIONS IN RANDOM PERMUTATIONS. Let Ω be
the symmetric group of all n! distinct permutations ω = (ω1, · · · , ωn) of the integers
(1, · · · , n) , and let P assign probability 1/n! to each such permutation. For every j ∈
{1, · · · , n} and ω ∈ Ω , let Xnj(ω) be the number of inversions caused by j in ω: to wit,
Xnj(ω) = k means that j precedes exactly k (0 ≤ k ≤ j− 1) of the integers 1, · · · , j− 1
in the permutation ω. With this notation,

Sn(ω) :=
n∑

j=1

Xnj(ω)
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is the total number of inversions in the permutation ω. For instance, with n = 5 the
permutation ω = (3, 2, 5, 1, 4) of (1, 2, 3, 4, 5) has Xn1(ω) = 0, Xn2(ω) = 1, Xn3(ω) =
2, Xn4(ω) = 0 and Xn5(ω) = 2 , thus Sn(ω) = 5 .

We have then the following, rather remarkable, fact: The random variables Xnj , j =
1, · · · , n are independent, and

P
(
Xnj = k

)
=

1
j

for k = 0, · · · , j − 1 .

The following argument is from Chung (1974): Let us start by observing that the values
Xn1(ω), · · · , Xnj(ω) are determined, as soon as the sites occupied by the integers 1, · · · , j
in the permutation ω are known (“allotted”); the sites occupied by the remaining integers
do not matter. Given j arbitrary sites among n ordered slots, there are j! (n − j)!
permutations ω in which the integers 1, · · · , n occupy these sites in some order. Among
these permutations, there are (j−1)! (n−j)! permutations in which the integer j occupies
the (j − k)th site, with the order from left to right, for some given k ∈ {0, 1, · · · , j − 1} .
With this site fixed, there are (j− 1)! ways in which the integers 1, · · · , j− 1 may occupy
the remaining “allotted” sites; and each such way corresponds to exactly one of the possible
values that the vector (Xn1, · · · , Xn,j−1) can take.

Let us fix some such value (c1, · · · , cj−1) , and consider all permutations ω in which

(a) the integers 1, · · · , j occupy the “allotted” sites; and

(b) Xn1(ω) = c1 , · · · , Xn,j−1(ω) = cj−1 , Xnj(ω) = k .

There are (n−j)! such ω ’s; thus, the number of ω ’s that satisfy condition (b) is n!
j! (n−j)! ·

(n− j)! = n!/j! .
Now sum up over k ∈ {0, 1, · · · , j − 1} to find the number of ω ’s in which Xn1(ω) =

c1 , · · · , Xn,j−1(ω) = cj−1 , namely: j (n!/j!) = n!/(j − 1)! . Therefore,

P[ ω ∈ Ω : Xn1(ω) = c1 , · · · , Xn,j−1(ω) = cj−1 , Xnj(ω) = k ]
P[ ω ∈ Ω : Xn1(ω) = c1 , · · · , Xn,j−1(ω) = cj−1 ]

=
n!
j!

n!
(j−1)!

=
1
j

,

proving the claim.

2.4 EXAMPLE: RANKS AND RECORDS. Suppose X1, X2, · · · are independent
random variables with common distribution function F (·) which is continuous. Consider
the event

Ak :=
{

Xk > max
1≤j≤k−1

Xj

}

that “a record is set on day t = k ”, the number Wn :=
∑n

k=1 χAk
of records set by day

t = n ”, as well as the random variable

Rn := 1 +
n−1∑

j=1

χ{Xn<Xj}
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which stands for the relative rank of the random variable Xn among X1, · · · , Xn . Clearly,
An = {Rn = 1} .

We claim that the events {Ak}k∈N are independent, with P(Ak) = 1/k , k ∈ N .
Similarly, the random variables {Rn}n∈N are also independent, with

P(Rn = %) =
1
n

, % = 1, · · · , n .

Indeed, because F (·) is continuous, we have P(X1 = X2) = 0 , and in fact we
have P

(⋃
m 6=n{Xn = Xm}

)
= 0 ; consult Exercise 2.4(ii). (Nothing here depends on the

particular form of F (·) , as long as this distribution function is continuous.) For fixed
n ∈ N , list the variables X1, · · · , Xn in decreasing order

max
1≤i≤n

Xi =: Y
(n)
1 > Y

(n)
2 > · · · > Y (n)

n := min
1≤i≤n

Xi

and define the random permutation π(n) =
(
π

(n)
1 · · · , π(n)

n

)
of (1, · · · , n) as π

(n)
i = r if

Xi = Y
(n)
r ; to wit, if the random variable Xi has relative rank r among X1, · · · , Xn .

There are n! permutations of (1, · · · , n) , each of them corresponding to a particular
ordering of the X1, · · · , Xn (relative rankings r1, · · · , rn ). Each particular configuration
{R1 = %1, · · · , Rn = %n} determines uniquely an ordering of X1, · · · , Xn . Because of our
assumptions, all such permutations are equally likely and we have

P
(
π

(n)
1 = r1, · · · , π(n)

n = rn

)
=

1
n!

= P
(
R1 = %1, · · · , Rn = %n

)
.

In particular,

P(Rn = %n) =
∑

%1,···,%n−1

P
(
R1 = %1, · · · , Rn = %n

)
=

∑
%1,···,%n−1

1
n!

;

each %j in this sum ranges over j values, so the number of terms in the sum is given by
1 · 2 · · · (n− 1) = (n− 1)! . Therefore P(Rn = %n) = (n− 1)!/ n! = 1/n , and

P
(
R1 = %1, · · · , Rn = %n

)
=

1
n!

= P
(
R1 = %1

) · · ·P(
Rn = %n

)

for all possible values of %j ∈ {1, · · · , j} and j = 1 · · · , n . The independence of the events
{An}n∈N follows now from that of the random variables {Rn}n∈N , since An = {Rn = 1} ;
in particular, P(An) = P(Rn = 1) = P

(
π

(n)
n = 1

)
= 1/n .

In particular, this allows us to compute E(Wn) =
∑n

k=1(1/k) ∼ log n and Var(Wn) =∑n
k=1(k − 1)/k2 ∼ log n , as n →∞ . ¦
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B: SOME ELEMENTARY LIMIT THEOREMS

Let us introduce now the notion of “convergence in probability”. This is just the
analogue of the notion of “convergence in measure” in Exercise 1.5.5, translated to the
context of a probability space.

2.2 Definition : Convergence in Probability. We say that a sequence of random
variables {Ξn}n∈N converges in probability to the random variable Ξ (defined on the same
probability space (Ω,F ,P)), if for every ε > 0 we have limn→∞ P(|Ξn − Ξ| > ε) = 0 .

In terms of this notion we can already begin to explore some elementary limit theo-
rems, as shown in the next exercise. We shall take up this subject in earnest in Sections
2.3-2.5 and 4.2.

2.3 EXERCISE : An Elementary Weak Law of Large Numbers. (i) Consider a
sequence of pairwise-uncorrelated random variables {Xn}n∈N in L2. Under the condition

lim
n→∞

1
n2

n∑

j=1

Var(Xj) = 0 ,

show that

lim
n→∞

1
n

n∑

j=1

(
Xj −E(Xj)

)
= 0 , in probability.

(ii) In particular, if X1, X2, · · · are pairwise-uncorrelated random variables in L2 with
the same expectation, then under the same condition as above, we have

Xn :=
1
n

n∑

j=1

Xj −→ E(X1) in probability, as n →∞ .

This is the case, for instance, in the coin-tossing Example 2.1, where E(X1) = p is the
“probability of success” on each individual toss.

2.4 Exercise : Convolution. Let X, Y be independent random variables with
distributions µ and ν , respectively, and F (·) = µ((−∞, ·]) , G(·) = ν((−∞, ·]) .

(i) Show that the probability distribution function H(x) = P(Z ≤ x), x ∈ R of the sum
Z := X + Y is given by the convolution

H(x) ≡ (F ∗G)(x) :=
∫ ∞

−∞
F (x− y) dG(y) =

∫ ∞

−∞
G(y − x) dF (x) , x ∈ R

of the distribution functions F (·) and G(·).
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(ii) Show that P(X +Y = 0) =
∑

y µ({−y}) ν({y}) . Thus, if either F or G is continuous,
we get P(X + Y = 0) = 0 .

(iii) If F (x) =
∫ x

−∞ f(u) du G(x) =
∫ x

−∞ g(u) du are both absolutely continuous with
densities f, g ∈ L+∩L1 , then H ≡ F ∗G is also absolutely continuous, with density

h(x) =
∫ ∞

−∞
f(x− y) g(y) dy =

∫ ∞

−∞
g(y − x) f(x) dx = (f ∗ g)(x) , x ∈ R

given by the convolution of the two densities f(·) and g(·), as in (1.6.6).

(iv) If X has Gamma Γ(λ, r) distribution and Y has Γ(λ, s) distribution, then X +
Y has Γ(λ, r + s) distribution. In particular, if X1, · · · , Xn are independent and
exponentially distributed with the same parameter λ , then X1+· · ·+Xn has Γ(λ, n)
distribution.

(v) If X has normal N (m1, σ
2
1) distribution and Y has N (m2, σ

2
2) distribution, then

X + Y has N (m1 + m2, σ
2
1 + σ2

2) distribution.

2.5 Exercise : DeMoivre & Laplace. In the coin-tossing Example 2.1, justify the
Bernoulli distribution (2.4) for the random variable Sn (number of successes in n trials),
and note that E(Sn) = np , Var(Sn) = npq . Then, with the help of the Stirling formula
n! ∼ √

2πnnn e−n , derive the DeMoivre-Laplace Limit Theorem

P
[
a ≤ Sn − np√

npq
≤ b

]
−→ Φ(b)− Φ(a) =

∫ b

a

e−x2/2

√
2π

dx , a < b in R . (2.6)

(Hint: Start with the “local” form
√

npq (n!/kn!(n− kn))! pknqn−kn −→ e−x2/2/
√

2π of
this result, where kn = x

√
npq + np , and observe that this convergence is uniform over x

in the bounded interval [a, b].)

C: GAUSSIANS

We have used in Exercise 2.5 the notation

Φ(x) :=
∫ x

−∞
ϕ(u) du , ϕ(x) =

e−x2/2

√
2π

; x ∈ R (2.7)

for the standard normal, or Gaussian, distribution Φ(·) and density ϕ(·) functions, respec-
tively (verify the properties of Definition 1.4.1). Translating by m ∈ R and dilating by
σ > 0 , we generate a two-parameter family of normal (Gaussian) distribution functions

Fm,σ2(x) ≡ Φ
(

x−m

σ

)
=

∫ x

−∞

1
σ

ϕ

(
u−m

σ

)
du , x ∈ R (2.8)
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indexed by their expectation m =
∫

x dFm,σ2(x) and their variance σ2 =
∫

(x −
m)2 dFm,σ2(x) . These distributions play a central rôle in Probability Theory and its
applications, for instance in the study of the fundamental Brownian Motion process. The
DeMoivre-Laplace result (2.6) is the prototypical Central Limit Theorem, a result that we
shall state in great generality in section 2.4 and prove in section 3.3.

2.5 Example: Multivariate Normal Distribution. A random vector X =
(X1, · · · , Xd)′ is said to have a multivariate normal distribution with mean-vector m =
(m1, · · · ,md)′ and symmetric, non-singular covariance-matrix Σ = {Σij}1≤i,j≤d , if
P[(X1, · · · , Xd) ∈ A] =

∫
A

f(x) dx for every A ∈ B(Rd) with

f(x) =
((

2π
)d |det(Σ)|

)−1/2

· exp
[
− 1

2
〈(x−m), Σ−1(x−m)〉

]
, x ∈ Rd .

The reader should verify that, in this case,
• each Xi has a (univariate) normal distribution with E(Xi) = mi , Var(Xi) = Σii ;
• Cov(Xi, Xj) = Σij for i 6= j ;
• (X1, · · · , Xd) are independent, if and only if they are pairwise-uncorrelated (that is,
Σij = 0 for i 6= j );
• the characteristic function ϕX(ξ) = E(e i〈ξ,X〉) of Remark 1.1 is given as

ϕ(ξ) = e
√−1 〈ξ,x〉−(1/2) ξ′Σξ , ξ ∈ Rd ;

and
• each linear combination λ1X1 + · · ·+ λdXd has a (univariate) normal distribution.

2.3 Definition: Gaussian Family. A family X = {Xα}α∈A of random variables
is called Gaussian, if for each d ∈ N and any {α1, · · · , αd} ⊆ A the random vector(
Xα1 , · · · , Xαd

)′ has a multivariate normal (Gaussian) distribution.

In this case we denote by m(α) := E(Xα) , α ∈ A the expectation function, and by

Σ(α, β) := E
[ (

Xα −m(α)
) (

Xβ −m(β)
)]

, (α, β) ∈ A2

the variance/covariance function. These two functions characterize the finite-dimensional
distributions of the family X .

A Gaussian family is closed in L2(P).
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D: EXAMPLES AND EXERCISES

2.6 Exercise : Poisson Approximation of “Rare Events”. Show that the Poisson
distribution e−λ λk / k! , k ∈ N0 provides an approximation to the Binomial distribution
of (2.4) for n large and p small (small probability of “success”) – in the sense that, if
{pn}n∈N is a sequence of positive numbers that decreases to zero, then

n!
k!(n− k)!

pk
n(1− pn)n−k −

(
e−λ λk

k!

) ∣∣∣
λ=npn

−→ 0 , ∀ k ∈ N0

as n →∞. (Hint: Start with the “easy” case pn = λ / n , some λ > 0 .)

2.7 Exercise: Geometric Distribution. In the coin-tossing Example 2.1, consider the
random “time of first success”

T (ω) := inf{n ∈ N |Xn(ω) = 1} , ω ∈ Ω

(always with the understanding inf ∅ ≡ ∞) , and show that the random variable T has
the geometric distribution: P[T = k] = p (1− p)k−1 , k ∈ N .

2.5 Example: Multinomial Distribution. Consider the space Ω = {1, · · · , d}n of
n-tuples ω = (ω1, · · · , ωn) with ωi ∈ {1, · · · , d} for each i = 1, · · · , n . Such an ω can
be visualized as representing the result of n repetitions of a random experiment with d

possible outcomes (such as throwing a die, if d = 6).
Suppose also that we assign the common distribution Pi[Xi = k] = pk > 0 , k =

1, · · · , d (
∑d

k=1 pk = 1) to each of the coördinate mappings Xi(ω) = ωi (1 ≤ i ≤
n) , and the probability measure P =

⊗n
i=1 Pi to Ω itself. This corresponds to the

intuitive notion, that different repetitions of the experiment are independent. If we count
the occurrences Sk(ω) =

∑n
j=1 Xk(ωj) of the kth outcome in these n repetitions of the

experiment, then the random vector (S1, · · · , Sd) has the Multinomial Distribution

P[S1 = n1, · · · , Sd = nd] =
n!

n1! · · ·nd!
· pn1

1 · · · pnd

d ; nk ≥ 0
d∑

i=1

ni = n . (2.9)

2.8 Exercise: Justify the form of the distribution (2.9). Show that each Sk has the
Binomial distribution

P[Sk = m] =
n!

m!(n−m)!
pm

k (1− pk)n−m , m = 0, · · · , n

of (2.4); and that Cov(Sk, S`) = −npkp` , for k 6= ` .
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2.9 Exercise: For I.I.D. random variables X1, X2, · · · with
∑∞

j=1 P[X1 = j] = 1 , show
that

P
[
Xn+1 > nXn , i.o.

]
= 1 ⇔ E

(
X1

)
= ∞ .

2.10 Exercise: Let X1, X2, · · · be random variables with

P(Xn = n2 − 1) =
1
n2

and P(Xn = −1) = 1− 1
n2

.

In particular, E(Xn) = 0 for every n ∈ N . Show that limn→∞
(

1
n

∑n
j=1 Xj

)
= −1 , a.e.

2.11 Exercise: If X1, X2, · · · are non-negative random variables with
∑

n P(Xn > n) <

∞ , show that

lim sup
n→∞

(
Xn

n

)
≤ 1 holds a.e.

2.12 Exercise: Let X1, X2, · · · be independent random variables with common expo-
nential distribution P(Xn > ξ) = e−ξ , ξ ≥ 0 . Show that

lim sup
n→∞

(
Xn

log n

)
= 1 , lim

n→∞
1

log n

(
max

1≤k≤n
Xk

)
= 1 , a.e.

E: THE TAIL (REMOTE) SIGMA-ALGEBRA

For any given sequence of random variables X1, X2, · · · let us denote by

• Fn := σ(X1, · · · , Xn) the smallest σ−algebra that measures the first n ≥ 1 of them;
by

• T n := σ(Xn+1, Xn+2, · · ·) the smallest σ−algebra that measures all but the first n ≥ 0
of them; and by

• T :=
⋂

n∈N0
T n the tail or remote σ−algebra of this sequence.

Intuitively, the σ−algebra T contains all events whose occurrence is not affected by
changing the values of finitely many terms in the sequence and leaving all others the
same. For instance, {Xn ∈ Bn, i.o. } belongs to T , for any sequence {Bn}n∈N ⊂ B(R) ;
so do the sets {limn Sn exists } and { lim supn (Sn/cn) > a } , where Sn =

∑n
j=1 Xj ,

a ∈ R and {cn}n ⊂ (0,∞) is a sequence that grows to infinity. But { lim supn Sn > 0 }
does not belong to T .

A celebrated result of Kolmogorov asserts that, for a sequence of independent random
variables, the tail σ−algebra is trivial.
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2.3 THEOREM: KOLMOGOROV’s ZERO-ONE LAW. If the random variables
X1, X2, · · · are independent, then T = {∅, Ω} mod. P, that is:

P(A) = 0 or 1 , for every A ∈ T .

Proof: Let us take any A ∈ T with P(A) > 0 , if such a set exists (if not, there is nothing
to prove); we shall try to show that P(A) = 1 . From Exercise 2.1 we know that Fn and
T n are independent for every n ∈ N , so we have

P(A ∩B) = P(A) ·P(B) (2.10)

for every B ∈ Fn , n ∈ N , because A ∈ T ⊆ Tn . Thus (2.10) holds for every A ∈ T ,
B ∈ ∪n∈NFn . Note that ∪n∈NFn is closed under finite intersections: if Bj ∈ Fnj for
some nj ∈ N , j = 1, 2 , then B1 ∩B2 ∈ Fn for n := max(n1, n2) .

Now we define a new probability measure PA(·) = P(A ∩ · )/P(A) on F as
in (2.1), and observe that the two probability measures PA and P agree on the
π−system ∪n∈NFn . Thus, by Exercise 1.3.8 these two measures agree on the σ-algebra
σ (∪n∈NFn) = σ(X1, X2, · · ·) = T 0 , which contains T . But this means that we can write
(2.10) with B = A , namely P(A) = P(A ∩ A) = P(A) · P(A) =

(
P(A)

)2 , and leads to
P(A) = 1 . ¦

F: STATIONARY RANDOM SEQUENCES

We say that a sequence of random variables X1, X2, · · · is stationary, if (X1, · · · , Xn) and
(Xk+1, · · · , Xk+n) have the same distribution, for every k ∈ N and n ∈ N .

Suppose that T : Ω → Ω is a measure-preserving transformation as in section 1.9;
then starting from any given random variable X : Ω → R we can generate a stationary
sequence

Xn(ω) := X(Tn−1(ω)) , n ∈ N , (2.11)

with the understanding T 0(ω) = ω . Indeed, for any Borel subset B of Rn and with
E = {ω ∈ Ω | (X1(ω), · · · , Xn(ω)) ∈ B} , we have

P[ (Xk+1, · · · , Xk+n) ∈ B ] = P[ω ∈ Ω |T k(ω) ∈ E ] = P(E) = P[ (X1, · · · , Xn) ∈ B ] .

This turns out to be not such a special case as it might seem. For suppose that Y1, Y2, · · · is
any stationary sequence of random variables; then the Daniell-Kolmogorov Theorem 1.6.4
allows us to construct, on a canonical sequence space, a probability measure P under
which the coördinate mappings (Xn(ω) = ωn , n ∈ N) have the same finite-dimensional
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distributions as (Yn , n ∈ N) . Now set X(ω) := ω1 ≡ X1(ω) , define the shift transforma-
tion T (ω1, ω2, · · ·) = (ω2, ω3, · · ·) , and observe that this T is measure-preserving and that
(2.11) holds. In other words: every stationary sequence of random variables can be cast
in the form (2.11), for a suitable random variable X : Ω → R and a measure-preserving
transformation T : Ω → Ω .

2.6 EXAMPLE: The I.I.D. Case. Suppose X1, X2, · · · is a sequence of independent
and identically distributed random variables (independent copies of the random variable
X ≡ X1 as in (2.11)), say on the completion of the canonical space Ω = RN : Xj(ω) =
ωj , j ∈ N . The shift transformation T (ω) = (ω2, ω3, · · ·) is then measure-preserving, and
for any of its invariant sets E ∈ I we have E = T−1E = {ω ∈ Ω |T (ω) ∈ E} modulo P ,
therefore E ∈ σ(X2, X3, · · ·) . Iterating this, we obtain E = T−nE = {ω ∈ Ω |Tn(ω) ∈ E}
modulo P , so E ∈ σ(Xn, Xn+1, · · ·) for every n ∈ N , and thus

E ∈
⋂

n∈N

σ(Xn, Xn+1, · · · ) = T , the tail σ-algebra : I ⊆ T .

But Theorem 2.3 gives then P(E) = 0 or 1 (the Kolmogorov zero-one law), so that I is
trivial and the shift transformation T ergodic.

If, in addition, the random variable X ≡ X1 is integrable (i.e., E(|X|) < ∞ ), then
from the Birkhoff pointwise ergodic Theorem 1.9.2 and its Corollary 1.9.1, we obtain the
so-called Strong Law of Large Numbers

lim
n→∞

1
n

n∑

j=1

Xj(ω) = lim
n→∞

1
n

n∑

j=1

X
(
T j(ω)

)
= E(X) , for a.e. ω ∈ Ω . (2.12)

Theorem 1.9.2 also gives the mean convergence result

lim
n→∞

E
∣∣ Xn −E(X)

∣∣ = 0 , where Xn(ω) :=
1
n

n∑

j=1

Xj(ω). (2.13)

2.7 Example: The Bernoulli Shift. Take as probability space Ω = [0, 1) together
with its Borel sets and Lebesgue measure, and consider the identity map X(ω) = ω as
well as the dyadic transformation T (ω) = 2 ω , modulo 1. We saw in section 1.9 that this
transformation is measure-preserving. Then X1(ω) = X(ω) , Xn+1(ω) = T (Xn(ω)) for
n ∈ N defines a stationary sequence.

This sequence is called the Bernoulli shift, because it admits the following represen-
tation: let ξ1, ξ2, · · · be independent binary (Bernoulli) random variables with common
distribution P(ξj = 0) = P(ξj = 1) = 1/2 , take

g(x) =
∑

j∈N

xj

2j
, x ∈ RN
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and define a stationary sequence by Yk := g(ξk, ξk+1, · · ·) for k ∈ N . Then (X1, X2, · · ·)
and (Y1, Y2, · · ·) have the same finite-dimensional distributions.

2.8 Example: Autoregressive Sequence. A stationary sequence models the behavior
of a random system which has “settled down” into a steady-state type of behavior. We
expect such behavior in random dynamical systems that have been running already for a
long time, so that transient (non-stationary) behavior has decayed to zero.

For instance, let {Ξn}n∈Z be a sequence of I.I.D. random variables (the “noise”
sequence) such that E(Ξn) = 0 , Var(Ξn)=1. Consider solving the equation

X
(N)
n+1 = α X(N)

n + Ξn+1 , n ≥ −N , X−N = 0

where α ∈ (−1, 1) . The solution is

X(N)
n =

n∑

k =−N

αn−k Ξk , n ≥ −N .

Now let N tend to infinity; this corresponds to the idea that on any fixed date n when
the system is observed, it has already been running for a long time. Passing to this limit,
we get the limiting sequence

Xn =
n∑

k =−∞
αn−k Ξk =

∞∑

k =0

αk Ξn−k , n ∈ Z .

Exercise: Check that this sequence is {Xn}n∈Z is stationary, and solves the “autoregressive
equation” Xn+1 = αXn + Ξn+1 .
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