
2.3. LAWS OF LARGE NUMBERS

If we carry out independent copies of the same experiment or, if in the course of the same
experiment, we observe repeatedly independent copies X1, X2, · · · of a certain numerical
characteristic X, then we expect that the arithmetic mean or “sample average”

Xn :=
1
n

n∑

j=1

Xj should converge, in some sense, to the ensemble average E(X) , (3.1)

as the number n of observations becomes large (n →∞). Here by “ensemble average” we
mean the expectation

E(X) =
∫

Ω

X(ω) dP(ω) .

In the special context of the coin-tossing Example 2.1, we saw a manifestation of this
principle in (2.5) and in Exercise 2.3.

More generally, we obtained in Example 2.6 the a.e. convergence of the random se-
quence {Xn }n∈N of sample averages, to the number E(X) , the ensemble average, under
the condition E(|X|) < ∞ , based on the Birkhoff pointwise ergodic theorem.

A celebrated result of Kolmogorov (1931) shows that (3.1) holds P−almost every-
where under the condition E(|X|) < ∞ , for random variables X1, X2, · · · that have the
same distribution as X but are only pairwise independent. This result is known as the
Kolmogorov Strong Law of Large Numbers.

3.1 THEOREM: KOLMOGOROV’s STRONG LAW OF LARGE NUMBERS.
Let X1, X2, · · · be a sequence of pairwise-independent random variables, with the same
distribution and E(|X1|) < ∞. Setting Sn :=

∑n
k=1 Xk and Xn := Sn / n , we have:

lim
n→∞

Xn(ω) = E(X1) for a.e. ω ∈ Ω . (3.3)

We shall defer the (rather technical) proof of this result until the next section. An
elegant, very direct, stronger and “natural” argument can be given with the help of the
theory of Martingales in the case of independent random variables; see Theorem 4.2.4.

An earlier result in the development of this subject, due to Ȟinčin (1928), shows that
the convergence in (3.1) holds “in probability”, in the sense of Definition 2.1. This result
is known as the Weak Law of Large Numbers, and is of course subsumed by the strong
law. However, in order to illustrate some useful techniques in the theory, we shall give the
proof of this weak law (Proposition 3.1) straightaway.
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3.1 Proposition: Ȟinčin’s Weak Law of Large Numbers. Let the random variables
X1, X2, · · · be pairwise-independent, with the same distribution and E(|X1|) < ∞. Setting
Sn :=

∑n
k=1 Xk and Xn := Sn / n , we have for any ε > 0:

P
(|Xn −E(X1)| > ε

) −→ 0 , as n →∞ . (3.3)

Proof : We have already established this result in the case X1 ∈ L2 (Exercise 2.3), so we
need now to argue its validity under the weaker condition X1 ∈ L1 . For this we shall use
the method of truncation: we consider the “truncated variables”

Zn := Xn , if |Xn| ≤ n ; Zn := 0 , if |Xn| > n ,

for all n ∈ N. We have from Exercise 1.2:
∑

n∈N

P(Xn 6= Zn) =
∑

n∈N

P(|Xn| > n) =
∑

n∈N

P(|X1| > n) ≤ 1 + E(|X1|) < ∞ .

Thus, thanks to the Borel-Cantelli Lemma, the original sequence {Xn}n∈N and its “trun-
cated version” {Zn}n∈N differ on at most finitely many indices: P(Xn 6= Zn , i.o.) = 0 .

This means that it suffices to show P
(|Zn −E(X1)| > ε

) −→ 0 , as n →∞ , for
Zn = Tn / n , Tn :=

∑n
k=1 Zk , or in fact

P (|Tn −E(Tn)| > ε n) −→ 0 , as n →∞ . (3.4)

This is because E(Tn) =
∑n

k=1 E(Zk) and E(Zn) = E
(
X1 χ{|X1|≤n}

) → E(X1) by the
Dominated Convergence Theorem, thus E(Tn) / n → E(X1) as n →∞ .

To prove (3.4), let us start by noticing that the variables {Zn}n∈N are also pairwise
independent, so that by the Čebyšev inequality:

(ε n)2 ·P(|Tn −E(Tn)| > εn) ≤ Var(Tn) =
n∑

k=1

Var(Zk) ≤
n∑

k=1

E(Z2
k) ,

so it suffices to show
∑n

k=1 E(Z2
k) = o(n2) . A rather crude estimate gives

n∑

k=1

E(Z2
k) ≤

n∑

k=1

k E
(|X1|χ{|X1|≤k}

) ≤ E (|X1|) · n(n + 1) / 2 = O(n2) ,

so we need to do something more elaborate.

For this purpose, consider an increasing sequence {an}n∈N with 0 < an < n and
such that an → ∞ , an = o(n) as n → ∞. If we write

∑n
k=1 E(Z2

k) in the form(∑
k≤an

+
∑

an<k≤n

)
E

(
X2

1 χ{|X1|≤k}
)
, then this last expression is dominated by

∑

k≤an

an E
(|X1|χ{|X1|≤an}

)
+

∑

an<k≤n

(
an E

(|X1|χ{|X1|≤an}
)

+ nE
(|X1|χ{an<|X1|≤n}

))
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which, in turn, is dominated by an · nE (|X1|) + n2 E
(|X1|χ{an<|X1|≤n}

)
. Therefore,

1
n2

n∑

k=1

E(Z2
k) ≤ an

n
E (|X1|) + E

(|X1|χ{an<|X1|}
) −→ 0 as n →∞ ,

since we assume an →∞ and (an/n) → 0 , as n →∞ . This finishes the argument. ¦

The method of truncation that served us so well in the above proof suggests also the
following result due to Kolmogorov and Feller.

3.2 Proposition: Let X1, X2, · · · be independent variables, and suppose that we have

lim
n→∞




n∑

j=1

P(|Xj | > bn)


 = 0 , lim

n→∞


 1

b2
n

n∑

j=1

E
(
X2

j χ{|Xj |≤bn}
)

 = 0

for some sequence {bn}n∈N of positive numbers with limn→∞ bn = ∞ . Then with an :=∑n
j=1 E

(
Xj χ{|Xj |≤bn}

)
we have

lim
n→∞

1
bn




n∑

j=1

Xj − an


 = 0 , in probability.

3.1 Exercise: Prove Proposition 3.2.

3.2 Exercise : Wald’s Identity. Let X1, X2, · · · be independent and integrable random
variables, and define S0 = 0 , Sn =

∑n
j=1 Xj (n ∈ N) . Suppose that T : Ω → N is

measurable and satisfies

{T ≤ n} ∈ σ(X1, · · · , Xn) , ∀ n ∈ N .

(Such an integer-valued random variable will be called stopping time in Chapter 4.)

(i) If E(Xj) = 0 for all j ∈ N , and if T is bounded (that is, P(T ≤ κ) = 1 for some
κ ∈ N), then ST is integrable and E(ST ) = 0 .

(ii) If X1, X2, · · · are identically distributed and non-negative, then

E(ST ) = E(X1) ·E(T ) . (3.5)

(iii) If X1, X2, · · · are identically distributed, and if E(T ) < ∞ , then ST is integrable
and (3.5) holds.
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3.3 Exercise : Renewal Theory. Let X1, X2, · · · be I.I.D. random variables with
P(X1 > 0) = 1 , 0 < m := E(X1) < ∞ , and define S0 = 0 , Sn =

∑n
j=1 Xj , n ∈ N , as

well as the family of random variables N given as

Nt := max{n ∈ N0 |Sn ≤ t} =
∞∑

n=1

χ{Sn≤t} , 0 ≤ t < ∞ .

If one thinks of the X’s as “inter-arrival times” of customers in a certain facility, then Sn

is the arrival-time of the nth customer, and Nt the number of customers who have arrived
by the fixed time t. Show that

(i) {Nt = n} = {Sn ≤ t < Sn+1} , {Nt < n} = {Sn > t} , for all n ∈ N0 , t ∈ [0,∞) ;
(ii) limt→∞ Nt = ∞ , P−a.e. ;
(iii) limt→∞ (Nt / t) = (1 /m) , P−a.e. ;
(iii) limt→∞ (E(Nt) / t) = (1 /m) .

For the last claim, you may find the Wald identity of Exercise 3.2 useful.
(The family N is the prototype for a Stochastic Process: a family of random variables
indexed by “time” t ∈ [0,∞). This process N is called Renewal Process. In the
special case where the X’s have the exponential distribution λ e−λx dx on (0,∞), then
N = {Nt , 0 ≤ t < ∞} is the so-called Poisson Process with rate λ. We shall encounter
Stochastic Processes again in section 2.9, where we take up the study of Brownian Motion.)

3.4 Exercise: For any bounded, continuous function f : [0,∞) → R , compute the limits

lim
n→∞

∫ 1

0

· · ·
∫ 1

0

f

(
x1 + · · ·+ xn

n

)
dx1 · · · dxn ,

lim
n→∞

2n

∫ ∞

0

· · ·
∫ ∞

0

f

(
x1 + · · ·+ xn

n

)
e−2(x1+···+xn) dx1 · · · dxn .

3.5 Exercise: Consider a sequence X1, X2, · · · of I.I.D. random variables with

P(X1 = ±n) =
c

n2 log n
, n = 3, 4, · · ·

where c is a normalizing constant, and set Sn =
∑n

j=1 Xj , n ∈ N .

(i) Observe that P(|X1| > n) ∼ constant / (n log n) , E(|X1|) = ∞ .

(ii) limn→∞ (Sn /n) = 0 , in probability.
In other words, we have a weak-law-of-large-numbers-type result, despite the fact that

the expectation of the random variables is infinite.
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(iii) Show that P
(|Xn| > n , i.o.

)
= 1 , and from this argue that

P
( |Sn| > (n/2) , i.o.

)
= 1 , P

(
lim

n→∞
(Sn / n) = 0

)
< 1 .

(iv) Show that, in fact: lim supn→∞ (Sn / n) = +∞ , lim infn→∞ (Sn / n) = −∞ , a.e.

3.6 Exercise: Let X1, X2, · · · are I.I.D. random variables, and denote Sn :=
∑n

j=1 Xj ,
Xn := Sn / n for n ≥ 1 .

(i) We have E(|X1|) < ∞ , if and only if P( |Xn| > c n , i.o. ) = 0 for every constant
c ∈ (0,∞) .

(ii) If E(|X1|) = ∞ , then

• P( |Xn| > cn , i.o. ) = 1 , ∀ c ∈ (0,∞).

• {
limn→∞ Xn exists in R

} ⊆ {
limn→∞ Xn = 0

}
, mod. P .

• P
(
limn→∞ Xn exists in R

)
= 0 , P

(
lim supn→∞ |Xn| = ∞)

= 1 .

3.7 Exercise: Glivenko-Cantelli Theorem: Let X1, X2, · · · be independent random
variables with common distribution function F (x) = P[ Xn ≤ x ] , x ∈ R . For any given
real number x consider the relative frequency

Fn(x, ω) :=
1
n

n∑

j=1

χ(−∞,x]

(
Xj(ω)

)

of values from among
(
X1(ω), · · · , Xn(ω)

)
that do not exceed the number x .

(i) Show that limn→∞ Fn(x, ω) = F (x) holds for a.e. ω ∈ Ω .

(ii) The random function x 7→ Fn(x, ω) is called the empirical distribution function
of

(
X1(ω), · · · , Xn(ω)

)
; show that it converges uniformly to F (·) , that is, for a.e. ω ∈ Ω

we have

lim
n→∞

(
sup
x∈R

∣∣ Fn(x, ω)− F (x)
∣∣
)

= 0 .

3.8 Exercise: The Saint Petersburg Game. Let X1, X2, · · · be independent random
variables with common distribution P(Xn = 2j) = 2−j , j ∈ N (you win 2j dollars if it
takes j tosses of a fair coin to obtain a success). Clearly E(Xn) = ∞ . Show that

lim sup
n→∞

( ∑n
k=1 Xk

n log2 n

)
= 1 , in probability

but not a.e. In fact,

lim sup
n→∞

(
Xn

n log2 n

)
= lim sup

n→∞

( ∑n
k=1 Xk

n log2 n

)
= ∞ , a.e.
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