
2.6. EXAMPLES

In this section we illustrate by examples the applicability of probabilistic notions and tools
to other fields. Such applications abound, so we have restricted ourselves to just a hand-
ful of representative examples from Analysis, Arithmetic, Graph Theory and Statistics.
In the next chapters we shall illustrate this interplay by additional examples, most no-
tably through the interplay between the Brownian Motion process and Partial Differential
Equations.

6.1 Exercise : S. Bernštein’s proof of the Weierstrass Approximation Theo-
rem. For any continuous function f : [0, 1] → R , there exists a sequence of polynomials
{Bn(·)}n∈N that converge to f uniformly over [0, 1]:

sup
0≤x≤1

|Bn(x)− f(x)| −→ 0 , as n →∞ .

In fact, one can take as such the “Bernštein polynomials”

Bn(x) =
n∑

k=0

f(k/n) · n!
k!(n− k)!

xk(1− x)n−k , 0 ≤ x ≤ 1 , n ∈ N . (6.1)

If, in addition, the function f(·) satisfies a Lipschitz condition of the type |f(x)− f(y)| ≤
K |x− y| , ∀x, y ∈ [0, 1] for some K ∈ (0,∞) , then in fact

sup
0≤x≤1

|Bn(x)− f(x)| ≤ K

2
√

n
, for all n ∈ N.

(Hint: Observe that Bn(p) = E[f(Xn)] in the notation of Example 2.1, in particular
(2.4), (2.5), and use Exercise 2.3(ii) as well as the Čebyšev Inequality.)

6.1 EXAMPLE : HYPOTHESIS-TESTING, DETECTION. On a measurable
space (Ω,F), suppose that we are given two probability measures P0 (hypothesis/“enemy
aircraft”) and P1 (alternative/“harmless object”), and that we want to discriminate be-
tween them. We can try to do this in terms of a (pure) test, that is, a random variable
X : Ω → {0, 1}, which rejects P0 on the event {X = 1}. With this interpretation,
P0(X = 1) is the probability of rejecting P0 when it is true (probability of type-I-error, or
“failure-to-detect”), whereas P1(X = 0) = 1 − P1(X = 1) is the probability of accepting
P0 when it is false (probability of type-II-error, or “false alarm”). Ideally, one would like
to minimize these error probabilities simultaneously, but typically this will not be possible:
a more sensitive radar decreases the chance of letting enemy aircraft go undetected, but
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also makes false alarms more likely. The next best thing is then to fix a certain number
0 < α < 1 (say α = 1% or α = 5%), and try to

maximize P1(X = 1), subject to P0(X = 1) ≤ α. (6.2)

In other words, one tries to find a test that minimizes the probability of “false alarms”,
among all tests that keep the probability of “failure to detect” below a given acceptable
significance level α ∈ (0, 1). This is the tack taken by the classical Neyman-Pearson theory
of Hypothesis Testing; see, for instance, Lehmann (1986), or Ferguson (1967).

The basic results of this theory are as follows. Take a third probability measure µ

with P0 < µ, Q < µ (for instance, µ = (P0 + P1)/2), and set

G :=
dP1

dµ
, H :=

dP0

dµ
.

6.2 Exercise: Neyman-Pearson Lemma. The problem of (6.2) has a solution,
namely X̂ = χ{kH<G} , provided that P0(kH < G) = α for some 0 < k < ∞,.

In other words, the test X̂ of Exercise 6.2 rejects the hypothesis, if and only if the
“likelihood ratio” G/H = (dP1/dµ)/(dP0/dµ) is sufficiently large. When a number
k with these properties cannot be found, one has to consider randomized tests, that is,
random variables X : Ω → [0, 1]. The new interpretation is that, if the outcome ω ∈ Ω is
observed, then the hypothesis P0 is rejected (respectively, accepted) with probability X(ω)
(resp., 1−X(ω)), independently of everything else. This way, E1(X) =

∫
X(ω) dP1(ω) is

then the power of the randomized test X, that is, the probability of rejecting the hypothesis
P0 when it is false; and E0(X) =

∫
X(ω) dP0(dω) is the probability of type-I-error for

the randomized test X (i.e., of rejecting P0 when it is true). By analogy with (6.2), one
seeks a randomized test X̂ which

{
maximizes E1(X), over all randomized tests

X : Ω → [0, 1] with E0(X) ≤ α

}
. (6.3)

The advantage of this “randomized” formulation is that the problem of (6.3) has a solution
for any given significance level α ∈ (0, 1).

6.3 Exercise: Generalized Neyman-Pearson Lemma. With Xα := {X : Ω →
[0, 1] | E0(X) ≤ α} , the supremum supX∈Xα

E1(X) is attained by the randomized test

X̂ = χ{kH<G} + b · χ{kH=G} ∈ Xα ,

where we have set (with the convention 0/0 = 0): k := inf{u ≥ 0 | P0(uH < G) ≤ α}
and

b :=
α−P0(kH < G)

P0(kH = G)
=

α−P0(kH < G)
P0(kH ≤ G)−P0(kH < G)

∈ [0, 1].
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6.2 EXAMPLE: PRIME DIVISORS. For any integer m , let us denote by ξ(m) the
number of prime divisors of m (without multiplicities). A result of Hardy and Ramanujan
states, roughly, that “almost every integer m has approximately log log m prime divisors,
and that the variance in the uncertainty of this statement is of the same order” log log m :

lim
n→∞

1
n
·#

{
1 ≤ m ≤ n

∣∣∣ |ξ(m)− log log m|√
log log m

> zm

}
= 0 and (6.4)

lim
n→∞

1
n
·#

{
1 ≤ m ≤ n

∣∣∣ |ξ(m)− log log n|√
log log n

> zn

}
= 0 , (6.5)

for any sequence {zn}n∈N of positive numbers with limn→∞ zn = ∞ . This statement
was later refined by Erdös and Kac, who showed that in the notation of (2.7) we have

lim
n→∞

1
n
·#

{
1 ≤ m ≤ n

∣∣∣ ξ(m)− log log n√
log log n

≤ z

}
= Φ(z) , ∀ z ∈ R , (6.6)

lim
n→∞

1
n
·#

{
1 ≤ m ≤ n

∣∣∣ ξ(m)− log log m√
log log m

≤ z

}
= Φ(z) , ∀ z ∈ R . (6.7)

P. Turán gave an elementary probabilistic argument for (6.4)-(6.5), that runs as fol-
lows. One starts by introducing, for each n ∈ N , a random variable Mn with uni-
form distribution on {1, · · · , n} , namely P[Mn = m] = 1/n , m = 1, · · · , n . Writing
ξ(m) =

∑
p≤n ηp(m) , where the sum extends over primes and ηp(m) = 1 if p/m ,

ηp(m) = 0 otherwise, we obtain 1
p − 1

n < E [ηp(Mn)] = 1
n

∑n
m=1 ηp(m) ≤ 1

p , as well as

Cov (ηp(Mn), ηq(Mn)) = E [ηp(Mn) ηq(Mn)]−E [ηp(Mn)] ·E [ηq(Mn)]

≤ 1
pq
−

(
1
p
− 1

n

) (
1
q
− 1

n

)
≤ 1

n

(
1
p

+
1
q

)

for any prime numbers p 6= q (since then ηp(m) ηq(m) = 1 ⇔ ηpq(m) = 1 ). Using the
basic information from the Prime-Number Theorem

π(n) :=
∑

p≤n

1 ∼ n

log n
,

∑

p≤n

1
p
∼ log log n + A + O(1/ log n)

as n →∞ (e.g. Apostol (1976), Chapter 4), we obtain that the sum of covariances

∑ ∑
1≤p 6=q≤n

Cov (ηp(Mn), ηq(Mn)) ≤ 1
n
·
∑∑

p 6=q

(
1
p

+
1
q

)
=

π(n)− 1
n

·
∑

p≤n

(2/p)

∼ 2
(

1
log n

− 1
n

)
[ log log n + A + O(1/ log n) ] −→ 0
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in the inequality of Exercise 2.2(c) is negligible as n → ∞ , yielding E(ξ(Mn)) =∑
p≤n E [ηp(Mn)] = log log n + O(1) and Var(ξ(Mn)) ≤ log log n + O(1) . It follows

then from the Čebyšev inequality that the left-hand side of (6.5) is asymptotically equiv-
alent to

P
[
|ξ(Mn)− log log n| > zn

√
log log n

]
≤ Var(ξ(Mn))

z2
n log log n

=
1
z2
n

+ O ( 1 / log log n )

as n →∞ , and the result (6.5) follows.

6.4 Exercise: Deduce (6.4) from (6.5), using the very slow increase of log log n .
(Hint: Let 0 < α < 1 , and consider only integers in the range nα ≤ m ≤ n ; show
that every integer m in this range that satisfies the condition of (6.5), also satisfies the
condition of (6.4) for an appropriate increasing sequence {zn}n∈N →∞ .)

6.5 Exercise: Prove the central-limit-theorem-type results (6.6)-(6.7) of Erdös and Kac.

6.3 EXAMPLE : TOURNAMENTS. Consider a set V of n vertices, and on it
a Tournament Tn , that is, a complete directed graph. In other words, suppose we have
n players, each of whom faces every other player, in a competition where no draws are
allowed; we direct an edge from vertex (player) i to vertex (player) j, if i beats j. The
schedule of the tournament does not matter, only the results. For a given integer k < n ,
we say that the tournament Tn has property Sk , if for every set of k players {x1, · · · , xk} ,
there is some other player y , who beats every player in the set.

Schütte was the first to pose the following problem: Is it true that for every integer

k , there exists a set V of n > k vertices, and on it a Tournament Tn with the property

Sk ? And if so, what is the smallest necessary number f(k) of players?
The (affirmative) answer of (6.8) below to Schütte’s question, was given by P. Erdös

(1963), and illustrates the “Probabilistic Method” that he introduced in Combinatorics and
in Graph Theory. The rough idea is that, for n ≥ f(k) sufficiently large, an appropriately
defined “random tournament” on the set V = {1, · · · , n} of players is “very likely” to have
the property Sk .

For every k ∈ N , there exists a finite tournament Tn , n > k with the property Sk .

(6.8)
Proof of (6.8) : Consider a set V = {1, · · · , n} of n > k players, and a “random graph” Tn

on it that corresponds to the idea of “deciding each game by tossing a coin independently
from game to game”. More formally, one takes as the sample space

Ω = { (ωij)1≤i,j≤n | ωij = 1 (i beats j) or ωij = −1 (j beats i) } ,

and assigns the probability 2−N , N = n(n− 1)/2 to each of its 2N elements.
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For any given subset X ⊂ V with k elements, denote by AX the property “no
player y ∈ V \ X beats all players in X ”. Clearly, P[ v beats all players in X ] =
1 − 2−k , for every v ∈ V \ X , and thus by independence: P(AX ) =

(
1− 2−k

)n−k .
Therefore,

P




⋃
X⊂V
#X=k

AX


 ≤

∑
X⊂V
#X=k

P(AX ) =
n!

k!(n− k)!
(
1− 2−k

)n−k
< 1 , for n ≥ f(k) ,

where n ≥ f(k) := min{m ≥ k | (m!/k!(m− k)!) · (1− 2−k
)m−k

< 1 } . In other words,

P




⋂
X⊂V
#X=k

(AX )c


 = P[ the property AX holds ] > 0 , (6.9)

and thus there is a point in the probability space Ω (i.e., a tournament Tn ) with the
property Sk . ¦

It can be checked that f(1) = 3 , f(2) = 7 , and careful asymptotics give c · k2k ≤
f(k) ≤ k22k (1+ o(1)) , as k →∞ . The argument leading to (6.9) is a typical illustration
of P. Erdös’s “probabilistic method” in Combinatorial Analysis: one shows the existence of
an object possessing a certain property by constructing an appropriate probability space
and showing that the event corresponding to the property under consideration has positive
probability.

6.4 EXAMPLE : BOREL’s NORMAL NUMBERS. One of the first strong laws
of large numbers was proved by E. Borel, who observed that the Rademacher functions
{rk}k∈N of Example 2.2 satisfy

lim
n→∞

r1(ω) + · · · + rn(ω)
n

= 0 , for λ− a.e. ω ∈ [0, 1) . (6.10)

Borel used essentially the method of proof for the Markov and Cantelli stong laws; cf.
Exercises 4.3 and 4.5.

To wit: if {fn}n∈N is a sequence of non-negative and integrable functions on
[0,1), then the convergence of

∑∞
n=1

∫ 1

0
fn(ω) dω implies the convergence of the se-

ries
∑∞

n=1 fn(ω) for λ−a.e. ω ∈ [0, 1) ; recall Exercise 2.4 (iv). Now take fn(ω) =(
r1(ω)+ ···+rn(ω)

n

)4

and observe that for this choice

∫ 1

0

fn(ω) dω =
n + 4!

2!2!
n!

2!(n−2)!

n4
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is the general term of a convergent series. We conclude now that for λ−a.e. ω ∈ [0, 1) we
have

∑∞
n=1

∫ 1

0
fn(ω) dω < ∞ , thus also limn→∞ fn(ω) = 0 , and we are done.

In the notation of Example 2.2 we have rk = 1 − 2εk , so (6.10) can be written
equivalently as

lim
n→∞

ε1(ω) + · · · + εn(ω)
n

=
1
2

, for λ− a.e. ω ∈ [0, 1) . (6.11)

In other words, almost every number ω ∈ [0, 1) has asymptotically the same proportion of
0’s and 1’s in its binary expansion. We express this property as normality to base 2.

From a probabilistic point of view the statement (6.11) is just the strong law of large
numbers applied to the sequence of independent Bernoulli variables ε1, ε2, · · · of Example
2.2, for which λ(εn = 0) = λ(εn = 1) = 1/2 .

Of course, nothing about the particular base 2 is sacrosanct. If b ≥ 2 is an integer,
we also have a unique expansion

ω =
ζ1(ω)

b
+

ζ2(ω)
b2

+ · · · +
ζn(ω)

bn
+ · · ·

for every ω ∈ [0, 1) , where each digit ζn(ω) takes values in {0, 1, · · · , b − 1} . Then
one shows that every given digit k ∈ {0, 1, · · · , b − 1} occurs with the same asymptotic
frequency in this expansion, namely:

lim
n→∞

1
n

n∑

j=1

χ{k}(ζj(ω)) =
1
b

, (6.12)

for λ−a.e. ω ∈ [0, 1) . This is normality to base b.

But of course, the union of countably many null sets is a null set, so we conclude that
(Lebesgue) almost every number in [0,1) is normal, meaning that it satisfies (6.12) for all
digits k = 0, 1, · · · , b− 1 and all bases b ≥ 2 .

It is ironic that it is not actually easy to exhibit even one member of this overwhelming
majority! No rational number is normal, though it might be to a particular basis (for
example, 1

3 = 0
2 + 1

22 + 0
23 + 1

24 + 0
25 + · · · is normal to base 2). The simplest known

example of a normal number is written in usual decimal notation as

0.123456789101112131415161718192021222324252627......

by listing all positive integers in succession after the decimal point; but even for this
number normality is no trivial matter to establish!
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