
CHAPTER 3: ELEMENTS OF HARMONIC ANALYSIS

In this chapter we introduce the notion and basic properties of Fourier transforms
for finite measures and for functions in L1(R), including the Fourier-Lévy inversion for-
mula. This fundamental result asserts that a probability measure µ on the real line is
uniquely determined by knowledge of its “spectrum” (also called “characteristic function”)∫
R

eiξx dµ(x) , for all frequencies ξ ∈ R . Properties of convergence of measures are tied to
related properties of pointwise convergence for the corresponding spectra (characteristic
functions), leading to a Fourier-analytic proof of the Central Limit Theorem. The basic
principles of the resulting Harmonic Analysis are then illustrated on the solution of some
simple but fundamental Differential Equations, both Ordinary and Partial (Heat Equa-
tion, Wave Equation). The solution to the Heat equation is then expressed in terms of the
Brownian Motion process.

3.1. FOURIER TRANSFORMS OF MEASURES

We have seen in the previous chapter how the distribution function F (·) ≡ FX(·) of a
random variable X determines the values of integrals E[Φ(X)] =

∫
Φ dFX for all Φ : R →

R , and how it is in turn determined from these integrals corresponding to all such Φ in
the class Cb(R) of bounded continuous functions (cf. Exercise 2.1.4). It turns out that
FX(·) is actually determined from knowledge of the “harmonics”

E(eiξX) =
∫ ∞

−∞
cos(ξx) dF (x) + i

∫ ∞

−∞
sin(ξx) dF (x) ,

for all “frequencies” ξ ∈ R . These correspond to the collection of bounded, continuous
functions

{
eiξ·}

ξ∈R
⊂ Cb(R) ; we are denoting here by i =

√−1 the imaginary unit. The
resulting function

R 3 ξ 7→ φX(ξ) = E(eiξX) ∈ C

is called the “spectrum” or characteristic function of X.

To begin our discussion, we start with a related concept, that of the characteristic
function of a probability measure µ on Borel subsets of R, defined as

φµ(ξ) :=
∫

R

eiξx dµ(x) , ξ ∈ R . (1.1)

The function φµ : R → C is then uniformly continuous, and satisfies

|φµ(ξ)| ≤ φµ(0) = 1 , φµ(−ξ) = φµ(ξ) .
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• Suppose that µ is absolutely continuous with respect to Lebesgue measure λ , that is,
of the form µ(A) =

∫
A

f(u) du , A ∈ B(R) for some measurable function f : R →
[0,∞) with

∫∞
−∞ f(u) du = 1 . Then φµ(·) coincides with the Fourier transform of the

probability density function f(·) as in Exercise 1.6.3, namely

f̂(ξ) =
∫ ∞

−∞
eiξuf(u) du .

• If µ is a purely discrete measure on N0 (as in Definition 2.1.1(ii)), then φµ(·) coincides
with the Fourier series p̂(ξ) =

∑
n∈N0

eiξnp(n) of the probability mass function p(·) .

The main property of the function φµ(·) is that it determines, or “characterizes”, the
measure µ , whence the terminology “characteristic function”. The following fundamental
result shows how to reconstruct a measure µ on the real line, from the spectrum of all its
harmonics.

1.1 THEOREM : FOURIER-LÉVY INVERSION FORMULA. For any real
numbers x1 < x2, we have

µ((x1, x2)) +
1
2

[
µ({x1}) + µ({x2})

]
= limT→∞

1
2π

∫ T

−T

e−iξx1 − e−iξx2

iξ
φµ(ξ) dξ .

︸ ︷︷ ︸
(1.2)

A crucial observation here, is that the integrand on the right-hand side of (1.2) is only
of the order O(1/ξ) in ξ , thus not integrable on the whole real line. The process of taking
the “principal value” of this integral, i.e., of truncation to the interval (−T, T ) followed by
taking the limit as T → ∞ , can be viewed as a way of “regulating” the integral over the
entire real line; this feature is common to most proofs of Fourier inversion formulae.

Proof : We start by evaluating the integral

1
2π

∫ T

−T

e−iξx1 − e−iξx2

iξ
φµ(ξ) dξ =

∫ T

−T

e−iξx1 − e−iξx2

2πiξ

(∫

R

eiξxdµ(x)
)

dξ

=
∫

R

IT (x;x1, x2) dµ(x) . (1.3)

Here we have set

IT (x; x1, x2) : =
∫ T

−T

eiξ(x−x1) − eiξ(x−x2)

2πiξ
dξ

=
1
π

∫ T

0

sin ξ(x− x1)
ξ

dξ − 1
π

∫ T

0

sin ξ(x− x2)
ξ

dξ

(1.4)
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and applied Fubini’s Theorem. This is justified, since

∣∣∣e
iξ(x−x1) − eiξ(x−x2)

iξ

∣∣∣ =
∣∣∣
∫ x−x1

x−x2

eiξudu
∣∣∣ ≤ x2 − x1 (1.5)

and
∫
R

dµ(x)
∫ T

−T
(x2−x1)dξ = 2T (x2−x1) < ∞. The limits of integrals of the form (1.3)

are easily determined, with the help of the following so-called ‘Dirichlet integrals’:

0 ≤ sgn (α) ·
∫ T

0

sin (αx)
x

dx ≤
∫ π

0

sin x

x
dx

limT→∞

∫ T

0

sin (αx)
x

dx =
π

2
· sgn (α) (1.6)

limT→∞

∫ T

0

1− cos (αx)
x

dx =
π

2
|α|

with the convention sgn(a) = 1, 0, −1 for a > 0, a = 0, a < 0 , respectively. It follows
that the quantity IT (x; x1, x2) satisfies |IT (x;x1, x2)| ≤ 2

π

∫ π

0
sin x

x dx uniformly in T ;
thus, as T → ∞ , it converges to zero when x < x1 or x > x2 ; to 1 , when x1 < x < x2 ;
and to (1/2) , when x = x1 or x = x2. We can apply now the Lebesgue Dominated
Convergence Theorem, and find that the limit of the right-hand side of (1.3) as T → ∞ ,
is exactly µ((x1, x2)) + 1

2

[
µ({x1}) + µ({x2})

]
. ♦

Let us list some immediate consequences of the Fourier-Lévy inversion formula.

• In terms of the probability distribution function F (x) ≡ µ ((−∞, x]) , x ∈ R induced
on B(R) by the probability measure µ , we can re-write the Fourier-Lévy inversion formula
in the form

1
2

[
F (x2) + F (x2−)

]
− 1

2

[
F (x1) + F (x1−)

]
= limT→∞

1
2π

∫ T

−T

e−iξx1 − e−iξx2

iξ
φµ(ξ) dξ .

(1.7)

• The characteristic function φµ(·) determines the probability distribution func-
tion F (·). Indeed, for every continuity point x of F (·) , we have

F (x) = limx1→−∞

(
limT→∞

1
2π

∫ T

−T

e−iξx1 − e−iξtx

iξ
φµ(ξ) dξ

)
(1.7)′

from (1.7). In other words, F (·) is uniquely determined by φµ(·) at all its points of
continuity – thus everywhere on R via F (z) = limx↓z, x/∈DF

F (x) ; this is because F (·) is
increasing and right-continuous, so the set DF of its discontinuities is at most countable.
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• Suppose now that φµ ∈ L1(R) ≡ L1(R,B(R), λ) , i.e.,
∫∞
−∞ |φµ(ξ)|dξ < ∞ (this is a big

assumption; see Exercise 1.7(e) for sufficient conditions). Then the distribution function

F (·) is continuously differentiable, with derivative

f(x) = F ′(x) =
1
2π

∫ ∞

−∞
e−iξxφµ(ξ) dξ , ∀ x ∈ R .

︸ ︷︷ ︸
(1.8)

Indeed, under the additional hypothesis φµ ∈ L1(R) , the estimate (1.5) and the Lebesgue
Dominated Convergence Theorem allow us to replace in (1.2), (1.7) the principal value(
limT→∞

∫ T

−T

)
by the Lebesgue integral

(∫∞
−∞

)
over the entire real line, namely:

µ((x1, x2)) +
1
2

[
µ({x1}) + µ({x2})

]
=

1
2π

∫ ∞

−∞

1− e−iξ(x2−x1)

iξ
e−iξx1 φµ(ξ) dξ .

Letting x2 → x1 in this expression, and appealing to the Dominated Convergence Theorem
once again, we find that µ({x1}) = 0, so that F (·) is continuous and (1.2) becomes

F (x2)− F (x1) =
1
2π

∫ ∞

−∞

1− e−iξ(x2−x1)

iξ
e−iξx1 φµ(ξ) dξ . (1.2)′

Dividing by x2 − x1 in this expression, we get

F (x2)− F (x1)
x2 − x1

=
1
2π

∫ ∞

−∞
e−iξx1

(
1− e−iξ(x2−x1)

iξ(x2 − x1)

)
φµ(ξ) dξ .

Once again, we let x2 ↓ x1 and appeal to the Lebesgue Dominated Convergence Theorem,
to conclude that the limit exists and is given by the right-hand side of (1.8) with x = x1 .

• The definition of the transform (1.1) also makes sense, if we replace the probability
measure µ by a “signed measure” of the form µ(A) =

∫
A

f(x) dx = µ+(A)− µ−(A) , A ∈
B(R) for some f ∈ L1(R) (difference of two finite measures µ±(A) =

∫
A

f±(x) dx in
the notation of (1.1.4)). In this case φµ(·) is just the Fourier transform

f̂(ξ) =
∫ ∞

−∞
eiξxf(x) dx, ξ ∈ R (1.9)

of the function f(·) , as in (1.6.7). It is easy to check that all the previous discussion is still
valid, with dµ(x) replaced formally by f(x) dx. The resulting function f̂(·) is bounded
and uniformly continuous, with ||f̂ ||∞ ≤ ||f ||1 , but not necessarily in L1(R) ; see Exercise
1.1.(c).

However, if we have f̂ ∈ L1(R) , as was assumed in the preceding item, then (1.8)
becomes the classical Fourier inversion formula

f(x) =
1
2π

∫ ∞

−∞
e−iξxf̂(ξ) dξ , x ∈ R . (1.10)
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In this case it is f(·) that is bounded and uniformly continuous, and 2π ||f ||∞ ≤ ||f̂ ||1 .

• The characteristic function of the convolution

µ(A) ≡ (µ1 ∗ µ2)(A) :=
∫

R

µ1(A− x) dµ2(x) , A ∈ B(R)

of two probability measures µ1 and µ2 , is the product φ(·) = φ1(·) · φ(·) of the corre-

sponding characteristic functions. Indeed, if X1, X2 are two independent random variables
with respective distributions µ1 and µ2 , then µ1∗µ2 is the distribution of X1+X2 (recall
Exercise 2.2.4), and its characteristic function is

φ(ξ) = E
[
eiξ(X1+X2)

]
= E

[
eiξX1

] ·E [
eiξX2

]
= φ1(ξ) · φ2(ξ) , ∀ ξ ∈ R .

1.1 Example: The following are the characteristic functions for the absolutely continuous
distributions of Example 2.1.1.
• Exponential: φ(ξ) = (1− i(ξ/λ))−1 .
• Standard Normal: φ(ξ) = e−ξ2/2 .
• Normal (m, σ2): φ(ξ) = e imξ−σ2ξ2/2 .
• Uniform on [0, h]: φ(ξ) = (eiξh − 1)/iξh .
• Uniform on [−h, h]: φ(ξ) = (sin(ξh)/ξh) .
• Double Exponential: φ(ξ) = 1/(1 + ξ2) .
• Cauchy: φ(ξ) = e−|ξ| .
• Triangular on [−1, 1]: φ(ξ) = 2 (1− cos ξ)/ξ2 .
• Fejér: φ(ξ) = (1− |ξ|)χ[−1,1](ξ) .

1.2 Example: The following are the characteristic functions for the purely discrete
distributions of Example 2.1.2.
• Dirac: φ(ξ) = eiξa.
• Bernoulli: φ(ξ) = p eiξa + q eiξb.
• Symmetric Bernoulli: φ(ξ) = cos(ξb) .
• Binomial: φ(ξ) =

(
p eiξ + (1− p)

)n .
• Poisson: φ(ξ) = exp

[
λ (eiξ − 1)

]
.

• Geometric: φ(ξ) = p eiξ/
(
1− (1− p) eiξ

)
.

1.1 Exercise: (a) Verify the computations of the Dirichlet integrals in (1.6).
(b) Verify the computations of Examples 1.1 and 1.2, and justify the “dualities” between
the double-exponential and the Cauchy, as well as between the triangular and the Fejér
distributions. Observe that the standard normal distribution is “self-dual” in this sense.
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(c) Show by example that we can have |f̂ | 6∈ L1(R) , for suitable f ∈ L1(R) , in the
notation of (1.9).

1.2 Exercise: (a) Convex combinations of characteristic functions are themselves char-
acteristic functions.
(b) If X ,Y are independent random variables, then φX+Y (·) = φX(·) φY (·) .
(c) If X has a normal distribution with expectation m1 and variance σ2

1 , and Y has a
normal distribution with expectation m2 and variance σ2

2 , and X and Y are independent,
then X + Y has a normal distribution with expectation m1 + m2 and variance σ2

1 + σ2
2 .

(d) If φ(·) is a characteristic function, then so is |φ(·)|2 . (Hint: Consider two inde-
pendent random variables X , Y with common characteristic function φ(·) , and look at
X − Y ; this is the so-called method of symmetrization.)

1.3 Exercise: With φ(ξ) := (1 − |ξ|)χ[−1,1](ξ) and {ak}n
k=1 ⊂ (0,∞) , {λk}n

k=1 ⊂
[0, 1] , n ∈ N with

∑n
k=1 λk = 1 the function ψ(ξ) =

∑n
k=1 λk φ(ξ/ak) , ξ ∈ R is a

characteristic function. In other words, every even function ψ : R → [0,∞) with ψ(0) = 1 ,
whose graph on [0,∞) is a convex polygon, is a characteristic function.

1.4 Exercise : Positive-Definite Functions. A function g : R → C is called
positive-definite, if

n∑

j=1

n∑

k=1

g(ξj − ξk) zj z̄k ≥ 0 holds for any {ξj}n
j=1 ⊂ R , {zj}n

j=1 ⊂ C , n ∈ N .

(a) Show that every positive-definite function satisfies

sup
ξ∈R

|g(ξ + h)− g(ξ)| ≤ 2
√
|1− g(h)| , h ∈ R ;

in particular, if g(·) is continuous at the origin, then it is uniformly continuous on R .
(b) Show that every characteristic fuction is positive-definite.
(c) (Bochner-Herglotz) Every positive-definite function g : R → C with g(0) = 1 which

is continuous at the origin, is a characteristic function.
(d) (Pólya) A function g : R → C with g(0) = 1 , which is evenly-symmetric, and

convex decreasing on [0,∞), is a characteristic function.
(e) Show that e−|ξ|

α

, ξ ∈ R is a characteristic function for 0 < α ≤ 2 .

1.5 Exercise: Show that every characteristic fuction φ(·) has the properties

0 ≤ 1−<(φ(2ξ)) ≤ 4 [1−<(φ(ξ))] , ∀ ξ ∈ R

∫ ∞

−∞

1−<(φ(t))
t2

dt =
π

2

∫

R

|x| dµ(x) .
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1.6 Exercise: Use the techniques of this section, to derive again the results of Exercises
2.5.1, 2.5.3(a); observe how much more direct these new derivations are.

1.7 Exercise: Let µ, ν be two probability measures on B(R) , and denote their respective
characteristic functions by φµ(·) , φν(·) .
(a) Establish the Parseval Identity

∫

R

e−ixξφµ(ξ) dν(ξ) =
∫

R

φν(ξ − x) dµ(ξ) , ∀ x ∈ R . (1.11)

In particular, for every a > 0 , x ∈ R , show that we have

fa(x; φµ) :=
1
2π

∫ ∞

−∞
e−ixξ−(aξ)2/2 φµ(ξ) dξ =

∫

R

e−(x−ξ)2/2a2

a
√

2π
dµ(ξ) . (1.12)

(Hint: Use the Tonelli-Fubini theorems, and recall the characteristic function of the normal
distribution dν(x) = a√

2π
exp{−a2x2/2}dx with m = 0, σ = 1/a from Example 1.1.)

(b) If X is a random variable with distribution µ , and Z is an independent standard
normal random variable, then for a > 0 the distribution of X+aZ is absolutely continuous
with density fa( · ; φµ) , namely

P[ X + aZ ≤ u ] =
∫ u

−∞
fa(x; φµ) dx , u ∈ R . (1.13)

(c) Use (1.12), (1.13) to provide another proof of the fact, that µ is determined completely
by its characteristic function φµ(·) ; namely, that the probability distribution function
F (·) := µ ((−∞, · ]) is given as

F (u) = lim
a↓0

∫ u

−∞
fa(x;φµ) dx , at every continuity point u of F (·) . (1.14)

(d) Suppose that φµ(·) ∈ L1(λ) ; then µ is absolutely continuous with respect to Lebesgue
measure λ , with density f = dµ/dλ which is bounded and uniformly continuous on R .
(e) Suppose that φµ(ξ) ≥ 0 , ∀ ξ ∈ R , that µ is absolutely continuous with respect to
Lebesgue measure λ , and that the density f = dµ/dλ is bounded (i.e., ||f ||∞ < ∞ ).
Then φµ(·) ∈ L1(λ) .

1.8 Exercise: The characteristic function φµ(·) of a probability measure µ is real-valued,
if and only if µ is symmetric: µ(B) = µ(−B) , ∀ B ∈ B .

1.9 Exercise: Let µ be a probability measure on B(R) , and φµ(·) its characteristic
function as in (1.1).

7



(a) If for some m ∈ N we have
∫
R
|x|m dµ(x) < ∞ , then φµ(·) has a (uniformly) contin-

uous derivative of order m , given by

Dmφµ(ξ) ≡ φ(m)
µ (ξ) =

∫

R

(ix)m eiξx dµ(x) , ξ ∈ R . (1.15)

In particular, we have then

Dmφµ(0) = im ·
∫

R

xm dµ(x) .

︸ ︷︷ ︸

(b) Conversely, if the derivative D2nφµ(0) of order m = 2n at ξ = 0 exists and is finite
for some n ∈ N , then

∫

R

x2n dµ(x) < ∞ and D2nφµ(0) = (−1)n ·
∫

R

x2n dµ(x) .

1.10 Exercise: For a probability measure µ on Borel subsets of Rd, we define the
characteristic function

φµ(ξ) :=
∫

Rd

ei〈ξ,x〉 dµ(x) , ξ ∈ R

in a manner completely analogous to (1.1) and with the inner-product notation 〈ξ, x〉 :=∑d
i=1 ξixi in Rd . Most of the results of this chapter have natural analogues in this setting

as well. For the distributions of Examples 2.2 and 2.3, verify the computations:
• Multinomial: φ(ξ) =

(
p1 eiξ1 + · · ·+ pd eiξd

)n
.

• Multivariate Normal: φ(ξ) = exp
{

i 〈ξ, m〉 − 1
2 〈ξ −m, Σ(ξ −m)〉} .

1.11 Exercise: Suppose that f and g are real-valued functions in L1(R) .
If in addition f̂ ∈ L2(R) and ĝ ∈ L2(R) , then the Plancherel Identity

||f̂ ĝ ||1 = 2π ||f g||1 (1.16)

holds. In fact, we have f ∈ L2(R) ⇔ f̂ ∈ L2(R) , and in this case the Plancherel Identity
becomes

||f̂ ||2 =
√

2π ||f ||2 . (1.17)
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A: FOURIER TRANSFORMS OF SQUARE-INTEGRABLE FUNCTIONS ∗

The purpose of this subsection is to discuss the construction and basic properties of the
Fourier Transform for complex-valued functions f : R → C in the Hilbert space L2(R)
with

〈f, g〉 =
∫ ∞

−∞
f(x) g(x) dx , ||f ||2 =

(∫ ∞

−∞
|f(x)|2 dx

)1/2

; f , g ∈ L2(R) .

The results will not be used in the remainder of this chapter, so the subsection can be
skipped or skimmed on first reading.

How then are we to define the Fourier transform

f̂(ξ) =
∫ ∞

−∞
eiξxf(x) dx , ξ ∈ R (1.9)

of a function f : R → C in L2(R) ? There is no problem with doing this if, in addition,
f belongs to the space L1(R) ; then f̂ : R → C is well-defined, uniformly continuous,
and bounded with ||f̂ ||∞ ≤ ||f ||1 < ∞ , as we have already seen.

Furthermore, if it happens that f̂ is itself integrable, i.e., |f̂ | ∈ L1(R) , then we also
have the Fourier Inversion formula (1.10), now written in the form

f =
(
f̂

)∨
, where g∨(x) :=

1
2π

∫ ∞

−∞
e−iξxg(x) dx , for g ∈ L1(R) ; (1.18)

in this case f itself is uniformly continuous and bounded, with 2π||f ||∞ ≤ ||f̂ ||1 < ∞ ,
as we have seen.

However, it is not immediately clear how to use this information to interpret (1.9), let
alone the inversion formula (1.10), if we only know that f ∈ L2(R) .

None of these problems exists if we take f in the class C∞↓ (R) of infinitely differen-
tiable, rapidly decreasing functions of Definition 1.6.1. In view of the fact that this space
is dense in L2(R) (Exercise 1.6.9), this may in fact be a good place to start.

To make headway with this idea, let us assume that f ∈ C∞↓ (R) ; then the Fourier
Transform f̂ is well-defined by (1.9), and it is checked readily that the analogue

Dkf̂ = ik · ĥk f , ∀ k ∈ N0 (1.19)

of (1.15) holds, where we have set hk(x) := xk . Similarly, integration-by-parts in (1.9)
gives

D̂mf = −im · hm f̂ , ∀ m ∈ N . (1.20)
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Putting these two properties together, we deduce that f̂ ∈ C∞↓ (R) , and verify the Fourier

inversion formula (1.10) in this case. One can check also the analogue of the Parseval
Identity

∫ ∞

−∞
e−ixξ f̂(ξ)g(ξ) dξ =

∫ ∞

−∞
ĝ(ξ − x)f(ξ) dξ , ∀ f, g ∈ C∞↓ (R) , x ∈ R (1.21)

of (1.11), as well the Plancherel Identities

||f̂ ||2 =
√

2π ||f ||2 , ||f̂ ĝ ||1 = 2π ||f g ||1 ; f , g ∈ C∞↓ (R) . (1.22)

1.12 Exercise: For f ∈ C∞↓ (R) , g ∈ C∞↓ (R) , verify that f̂ ∈ C∞↓ (R) , ĝ ∈ C∞↓ (R)
and check the validity of the properties (1.19)-(1.21).

To establish (1.22), consider the functions g(x) := f(−x) and h(x) :=
(
f ∗ g

)
(x) ≡∫∞

−∞ f(y) f(y − x) dy , both of them in C∞↓ (R) . It is seen that ĝ is the complex conjugate

of f̂ , and ĥ = f̂ ĝ = |f̂ |2 , so that the Fourier Inversion Formula yields

(
||f ||2

)2

=
∫ ∞

−∞
f(y) f(y) dy = h(0) =

1
2π

∫ ∞

−∞
e−iξxĥ(ξ) dξ

∣∣∣
x=0

=
1
2π

∫ ∞

−∞

∣∣f̂(ξ)
∣∣2 dξ =

1
2π

∣∣∣∣f̂
∣∣∣∣2 ,

which is the first formula in (1.22); the second is proved similarly.

We are now in a position to extend the Fourier transform and its properties, from
C∞↓ (R) to the Hilbert space L2(R) . To do this, take an arbitrary f ∈ L2(R) and any
sequence {fn}∞n=1 ⊂ C∞↓ (R) with ||fn − f ||2 → 0 as n → ∞ ; such a sequence exists,
because C∞↓ (R) is dense in L2(R) (Exercise 1.6.9). The Fourier transforms {f̂n}∞n=1 of
these functions are also in C∞↓ (R) , and from the Plancherel identity (1.22) we see that

1√
2π

· ∣∣∣∣f̂n − f̂m

∣∣∣∣
2

=
∣∣∣∣fn − fm

∣∣∣∣
2
≤ ∣∣∣∣fn − f

∣∣∣∣
2
+

∣∣∣∣fm − f
∣∣∣∣

2
−→ 0 , as m, n →∞ ;

in other words, {f̂n}∞n=1 is a Cauchy sequence in the complete space L2(R) , thus there
exists some element f̂ ∈ L2(R) such that:

∣∣∣∣f̂n − f̂
∣∣∣∣

2
−→ 0 as n → ∞ . This element

is the same (modulo λ−a.e. equivalence) for any sequence {fn}∞n=1 ⊂ C∞↓ (R) used to
approximate f in the sense of the L2(R)−norm, so we can define f̂ as the Fourier

Transform of f .
The Plancherel identity follows now immediately, since

∣∣∣∣f ∣∣∣∣
2

= lim
n→∞

∣∣∣∣fn

∣∣∣∣
2

=
1√
2π

· lim
n→∞

∣∣∣∣f̂n

∣∣∣∣
2

=
1√
2π

· ∣∣∣∣f̂ ∣∣∣∣
2
. (1.23)
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The inverse map g 7→ g∨ of (1.18) is extended from C∞↓ (R) to L2(R) in exactly the
same way, and the inversion formula follows:

(
f̂

)∨ =
(

lim
n→∞

f̂n

)∨ = lim
n→∞

(
f̂

)∨ = lim
n→∞

fn = f . (1.24)

1.13 Exercise: The Riemann-Lebesgue Lemma. For any f : R → C in L1(R) ,
show that

lim
|ξ|→∞

|f̂(ξ)| = 0 .

(Hint: Establish this property first for f ∈ C∞↓ (R) ; then recall Exercise 1.6.9.)

1.14 Exercise: The Heisenberg “uncertainty principle”.
(a) Suppose that f : R → C belongs to the Schwartz space C∞↓ (R) . Show then the
Heisenberg Inequality

∫ ∞

−∞

(
x |f(x)|

)2

dx ·
∫ ∞

−∞

(
ξ |f̂(ξ)|

)2

dξ ≥ π

2
( ||f ||2)4 , (1.25)

with equality for the Gaussian densities ϕσ2(x) = 1√
2πσ2 exp

{
− x2

2σ2

}
, σ2 > 0 .

(Hint: Observe that for such f we have Df ≡ f ′ ∈ Lk(R) for every k ∈ N , and
D̂f(ξ) = −iξf̂(ξ) thanks to integration by parts; then use the Plancherel identity).
(b) Argue that (1.25) holds, in fact, for every f ∈ L2(R) .
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