
3.2. CHARACTERISTIC AND DISTRIBUTION FUNCTIONS

Since probability distribution functions are uniquely characterized by their spectra (char-
acteristic functions), it is reasonable to try and decide the extent to which the convergence
of probability distribution functions, discussed in section 2.4, might be determined by the
convergence properties of their corresponding characteristic functions. This line of reason-
ing turns out to be fruitful: the concept of convergence in distribution can be translated

into the easier property of pointwise convergence for characteristic functions. This is the
content of the next result, which will lead us ultimately to a proof of the Central Limit
Theorem 2.5.1 in the next section.

2.1 THEOREM : Convergence in Distribution via Characteristic Functions.
Let {Fn(·)}n∈N be a sequence of probability distribution functions, and let {φn(·)}n∈N be
the corresponding characteristic functions.
(i) If {Fn(·)}n∈N converges to a probability distribution function F (·) at all continuity

points x of F (·), and if φ(·) is the characteristic function of F (·), then φn(·) → φ(·)
pointwise (i.e., limn→∞ φn(ξ) = φ(ξ) for all ξ ∈ R);

(ii) Conversely, suppose φn(·) → φ(·) pointwise and φ(·) is continuous at ξ = 0; then there
exists a probability distribution function F (·) with φ(·) as its characteristic function,
and limn→∞ Fn(x) = F (x) at all continuity points x of F (·).

Part (i) is an immediate consequence of Theorem 2.4.3, since we can take Φ(y) = eiξy;
then

∫
Φ dF is the characteristic function φ(·) corresponding to F (·), evaluated at ξ ∈ R

(the “harmonics” at “frequency” ξ ∈ R ). To prove (ii) we need a basic lemma, which says
essentially that the space of distribution functions is “precompact”.

2.1 Lemma : Helly-Bray. Let {Fn(·)}n∈N be any sequence of probability distribution
functions. Then there exists a subsequence {Fnk

(·)}k∈N and a right-continuous, increasing
function F (·) , such that

lim
k→∞

Fnk
(x) = F (x) holds at all continuity points x of F (·) .

Note that the Helly-Bray Lemma does not guarantee F (−∞) = 0 or F (∞) = 1, so
the function F (·) need not be a probability distribution function. For instance, if we define
Fn(x) := 1, x ≥ n and Fn(x) := 0, x < n for all n ∈ N , then limn→∞ Fn(x) = F (x) ≡ 0 ,
∀ x ∈ R : all (probability) mass “leaks out at infinity”.

PROOF : Let D = {x1, x2, · · ·} be a countable, dense set in R. We can invoke the
familiar “diagonalization argument”, to show that {Fn(·)}n∈N contains a subsequence
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that converges at every point of D. More precisely, since 0 ≤ Fn(x1) ≤ 1, we can select
a convergent subsequence Fnk

(·) ≡ F
(1)
k (·), k ∈ N so that {F (1)

k (x1)}k∈N converges.
Repeating the argument with {F (1)

n (·)}n∈N, we see that we can select a subsequence, call
it F

(1)
nk (·) ≡ F

(2)
k (·), k ∈ N, so that {F (2)

k (x2)}k∈N converges. We arrive this way at a
nested family

{F (1)
n (·)}n∈N ⊇ {F (2)

n (·)}n∈N ⊇ · · · ⊇ {F (m)
n (·)}n∈N ⊇ · · · (2.1)

of subsequences, with the property that {F (m)
n (xm)}n∈N converges at each xm ∈ D. Then

the subsequence of functions {F (n)
n (·)}n∈N satisfies the desired condition.

Indeed, for every xm ∈ D, we have that {F (n)
n (xm)}n≥m is a subsequence of

{F (m)
n (xm)}n≥m , and thus converges. We can introduce already a preliminary candidate

F̃ (·), by setting

F̃ (x) := limn→∞ F (n)
n (x) for x ∈ D, F̃ (x) := sup xk≤x

xk∈D

F̃ (xk) for x /∈ D. (2.2)

The resulting function F̃ (·) clearly takes values in [0, 1], and is easily seen to be increasing.

We show now that limn→∞ F
(n)
n (x) = F̃ (x) holds for every x in the set C of continu-

ity points of F̃ (·) . Choose y, ξ ∈ D with y < x < ξ , so that F
(n)
n (y) ≤ F

(n)
n (x) ≤ F

(n)
n (ξ),

and let n →∞ to obtain

F̃ (y) ≤ lim inf
n→∞

F (n)
n (x) ≤ lim sup

n→∞
F (n)

n (x) ≤ F̃ (ξ) . (2.3)

Since F̃ (·) is continuous at x , we can let y ∈ D , ξ ∈ D tend to x (from below and above,
respectively), to get limn F

(n)
n (x) = F̃ (x) , as asserted.

Finally, the desired function F (·) can be constructed by setting F (x) := F̃ (x) for
x ∈ C , and F (x) := limy↓x, y∈CF̃ (y) otherwise. This F (·) is still increasing, and is now
right-continuous. Furthermore, the points of discontinuity of F (·) are the same as those
of F̃ (·) . ♦

The key additional property of the sequence {Fn(·)}n∈N , which will ensure both
F (−∞) = 0 and F (∞) = 1 in (and thus prevents the kind of “leakage of probability
mass” we witnessed in the example immediately following) Lemma 2.1, is tightness.

More precisely, a sequence of probability measures {µn}n∈N is said to be tight, if for
every ε > 0 there exists K ∈ (0,∞) such that

µn((−K, K]) > 1− ε holds for all n ∈ N . (2.4)

If {µn} are the Lebesgue-Stieltjes measures induced by the probability distribution func-
tions {Fn(·)}, then (2.4) is clearly equivalent to

Fn(K)− Fn(−K) > 1− ε holds for all n ∈ N . (2.4)′
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A sequence of probability distribution functions {Fn(·)}n∈N for which (2.4)′ holds, will
also be called tight.

2.2 Lemma : Tightness. Let {Fn(·)}n∈N be a sequence of probability distribution
functions, and let {φn(·)}n∈N be the corresponding characteristic functions.

(i) Suppose there exists an increasing function F : R → R , for which limn→∞ Fn(x) =
F (x) holds at all continuity points x of F (·) .

Then {Fn(·)}n∈N is tight, if and only if F (−∞) = 0 and F (∞) = 1.

(ii) Suppose that {φn(·)}n∈N converges pointwise to a function φ(·) which is continuous
at the origin ξ = 0 ; then the sequence {Fn(·)}n∈N is tight.

Proof : (i) Assume first that {Fn(·)}n∈N is tight. For any ε > 0, let K be so large
that Fn(K) − Fn(−K) > 1 − ε holds for all n ∈ N , and take an arbitrary point of
continuity x ≥ K of F (·). Then Fn(x)−Fn(−x) > 1− ε , hence Fn(x) ≥ Fn(K) > 1− ε.
We may now let x →∞ and invoke the arbitrariness of ε > 0 , to obtain limx→∞F (x) = 1.
Similarly, F (−x) ≤ ε, whence limx→−∞ F (x) = 0.

Conversely, assume that F (−∞) = 0, F (∞) = 1. Suppose {Fn(·)}n∈N is not tight;
then there exist an ε > 0 and a subsequence {Fnk

(·)}k∈N , so that Fnk
(k)−Fnk

(−k) ≤ 1−ε

holds for all k ∈ N. Let a, b be any two points of continuity of F (·) with a < b . For k

large enough, we have (a, b] ⊂ (−k, k] and thus Fnk
(b) − Fnk

(a) ≤ 1 − ε. Letting k → ∞
gives F (b)−F (a) ≤ 1−ε , and hence F (∞)−F (−∞) ≤ 1−ε by letting b →∞, a → −∞
through the set of continuity points of F (·) . This is a contradiction, and (i) is proved.

• To prove (ii), we observe that the function ξ 7→ φ(ξ) + φ(−ξ) is real-valued, takes the
value 2 at ξ = 0, and satisfies |φ(ξ) + φ(−ξ)| ≤ 2. The continuity of φ(·) at ξ = 0 implies
that for any ε > 0, there is a δ > 0 so that

0 ≤ 1
δ

∫ δ

0

[ (
2− (φ(ξ) + φ(−ξ)

) ]
dξ ≤ ε.

In view of the Lebesgue Dominated Convergence Theorem, this implies

1
δ

∫ δ

0

[ (
2− (φn(ξ) + φn(−ξ)

) ]
dξ ≤ 2 ε , for all large enough n ∈ N .

If we write φn(·) in terms of the measure µn induced by Fn(·) and apply Tonelli’s
Theorem, we obtain the inequality

2ε ≥ 2
δ

∫

R

(∫ δ

0

(
1− cos(ξx)

)
dξ

)
dµ(x) = 2

∫

R

(
1− sin(δx)

δx

)
dµn(x) .
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The integrand
(
1− sin(δx)

δx

)
is positive because |sin(u)| ≤ |u| for all u ∈ R , and we have

the bounds

ε ≥
∫

{δ|x|>2}

(
1− sin(δx)

δx

)
dµn(x) ≥

∫

{δ|x|>2}

(
1− 1

|δx|
)

dµn(x) ≥ 1
2
· µn

({δ|x| > 2})

or equivalently µn

([− 2
δ , 2

δ

]) ≥ 1− 2ε , and (ii) is proved. ♦

PROOF OF THEOREM 2.1 : We have noted already that part (i) is an immediate
consequence of Theorem 2.4.3. For part (ii) note that, by the Helly-Bray Lemma, we can
find a subsequence {Fnk

(·)}k∈N that converges to an increasing, right-continuous function
F (·) at all its continuity points. Of course, the corresponding characteristic functions
{φnk

(·)}k∈N converge pointwise to φ(·) , which is continuous at the origin ξ = 0.

From the Tightness Lemma 2.2(ii), the sequence {Fnk
(·)}k∈N is tight; and Lemma

2.2(i) implies that F (·) is actually a probability distribution function. By part (i) of
the Theorem, the sequence {φnk

(ξ)}k∈N converges for each ξ ∈ R to the value of the
characteristic function of F (·) at ξ, which must then coincide with φ(ξ).

• Our last task is to show that the entire sequence {Fn(x)}n∈N converges to F (x), for
every continuity point x of F (·).

Assume otherwise. Then there exists a subsequence {Fmk
(·)}k∈N ⊆ {Fn(·)}n∈N such

that
|Fmk

(x)− F (x)| > δ holds for all k ∈ N large enough, (2.5)

for some δ > 0 and some continuity point x of F (·). But we can apply again the Helly-
Bray and Tightness Lemmata, and obtain a subsequence {Fmk`

(·)}`∈N converging to some
distribution function G(·) at all its continuity points, with corresponding characteristic
functions {φmk`

(·)}`∈N converging to the characteristic function of G(·).
Since {φn(·)}n∈N converges to φ(·) pointwise, it follows (thanks to part (i) of the

Theorem) that φ(·) is also the characteristic function of G(·). But a distribution function
is uniquely determined by its characteristic function (Fourier-Lévy Inversion Theorem 1.1),
so G(·) ≡ F (·). Thus x is a continuity point for G(·), and we must have |Fmk`

(x)−F (x)| =
|Fmk`

(x)−G(x)| ≤ δ for ` ∈ N large enough; a contradiction to (2.5). ♦

2.1 Exercise: Let µ , {µn}n∈N be probability measures on B(R) with corresponding
characteristic functions φ ∈ L1(R) , {φn}n∈N ⊆ L1(R) , and assume that φn −→ φ as
n → ∞ in L1(R) . Then the densities f = dµ/dλ , fn = dµn/dλ (n ∈ N) exist and are
bounded and continuous on R , and we have limn→∞ supx∈R |fn(x)− f(x)| = 0 .

2.2 Exercise: If φ(·) is a characteristic function, then so is exp[λ(φ(·)− 1)] .
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(Hint: Consider the limit of
(
1 + (λ / n) (φ(·)− 1)

)n

as n →∞ , and recall Exercise 1.2
and Theorem 2.1(ii).

2.3 Exercise: If every subsequence of a sequence {µn}n∈N of probability measures
converges vaguely to the same probability measure µ , then the entire sequence converges
vaguely to this measure.
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