
3.3. PROOF OF THE CENTRAL LIMIT THEOREM

We have now the tools to provide a proof for the Central Limit Theorem 2.5.1. It suffices to
deal with the case m = 0 (otherwise, we can just replace each Xj by Xj−m). We begin by
showing that the characteristic function of Sn
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as n → ∞. In fact, since the variables X, X1, X2, · · · are independent and have the same
distribution, we have
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To determine the asymptotics of the right-hand side as n → ∞ , we use the following
version

f(x) = f(0) + xf ′(0) +
1
2
x2f ′′(0) + x2
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0

(1− u)[f ′′(ux)− f ′′(0)]du (3.1)

of Taylor’s formula, valid for any C2−function f(·), in particular for f(x) = eix. Setting
x = ξ X
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the Lebesgue Dominated Convergence Theorem shows that, for each fixed ξ ∈ R , we have
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where bn → 0 as n → ∞; it follows readily that E
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The function ξ 7→ e−
1
2 ξ2

is continuous at the origin, and is the characteristic function of
the standard normal probability distribution function Φ(·) of (2.2.7); recall Exercise 1.1.
In view of Theorem 2.1, the distribution function of Sn

σ
√

n
converges pointwise to Φ(·).

This is indeed the conclusion of the Central Limit Theorem.
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3.1 Exercise: Suppose that X , Y are independent random variables with common
distribution µ , zero-expectation

∫
R

x dµ(x) = 0 and unit-variance
∫
R

x2 dµ(x) = 1 . If
X − Y , X + Y are independent, then µ is standard normal. (Hint: Observe that
φµ(2ξ) = (φµ(ξ))4 , ∀ ξ ∈ R , and then iterate.)

3.2 Exercise: In the context of Exercise 2.5.4, and in the case of normal F , show that
the random variables S2

n and Xn are independent.

3.3 Exercise: (a) Show that the atoms of a measure µ can be recovered from the spectrum

φµ(·), in the sense

µ({x}) = lim
T→∞

1
2T

∫ T

−T

e−iξxφµ(ξ) dξ , ∀ x ∈ R .

(b) Show that the total energy in the atoms equals the asymptotic energy-per-unit-

frequency in the spectrum, to wit:

∑

x∈R

(µ({x}))2 = lim
T→∞

1
2T

∫ T

−T

|φµ(ξ)|2 dξ .

(Hint: Use part (a), and symmetrization.)

3.4 Exercise: Prove the Weak Law of Large Numbers of Theorem 2.3.1, using charac-
teristic functions along with Exercise 2.4.1.

3.5 Exercise: If Xλ has a Poisson distribution with parameter λ , use characteristic
functions to show that (Xλ − λ)/

√
λ converges in distribution to the standard normal.

3.6 Exercise: Let {cn}n∈N be a sequence of real numbers, such that {e iξcn}n∈N

converges in C for every ξ in a set of real numbers with positive measure. Show that
limn→∞ cn exists in R .

3.7 Exercise: Suppose that ϕ(·) is a characteristic function, that {bn}n∈N is a sequence
of positive numbers, and that {ϕ(ξbn)}n∈N converges to %(ξ) for all ξ ∈ R , where %(·)
is a characteristic function. Show then that limn→∞ bn exists in (0,∞) .
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