
3.4. APPLICATIONS TO DIFFERENTIAL EQUATIONS

As our second illustration of Fourier-analytic techniques, this time in the field of Differential
Equations, let us consider solving the second-order Ordinary Differential Equation

u′′(x)− u(x) + f(x) = 0 , x ∈ R (4.1)

for a function u ∈ C2(R)∩L1(R) , where f : R → R is a given function in C(R)∩L1(R) .
We impose the requirement u ∈ L1(R) in lieu of “boundary conditions”, as we are looking
to solve the equation (4.1) on all of R .

The solution can be guessed easily, by looking at the Fourier transform û(ξ) =∫∞
−∞ eiξxu(x) dx of u(·), as well as at those of u′(·), u′′(·); “integrating-by-parts” heuristi-

cally, and assuming boldly that u(±∞) = u′(±∞) = 0 , we obtain

(̂u′)(ξ) =
∫ ∞

−∞
eiξxu′(x) dx = −iξ

∫ ∞

−∞
eiξxu(x) dx = −iξ û(ξ)

and (̂u′′)(ξ) = −iξ (̂u′)(ξ) = −ξ2û(ξ) . But now in light of these computations, and
taking Fourier transforms of all terms in (4.1), we obtain from this equation û(ξ)− f̂(ξ) =
−ξ2 û(ξ) , which implies

û(ξ) =
1

1 + ξ2
· f̂(ξ) , ξ ∈ R .

But we know from Example 1.1 that 1/(1 + ξ2) is the Fourier transform of the double-
exponential probability density function (1/2) e−|x| , and Exercise 1.6.3 suggests that the
solution of (4.1) should be the convolution

u(x) =
1
2

∫ ∞

−∞
e−|x−y|f(y) dy , x ∈ R

︸ ︷︷ ︸
(4.2)

of the double-exponential density with the given function f . This heuristic approach can
be made rigorous, as illustrated in the following two exercises.

4.1 Exercise: Show by direct computation that the function of (4.2)
(i) is of class C2(R) and satisfies the equation (4.1);
(ii) is in L1(R), in fact ||u||1 ≤ ||f ||1 .

4.2 Exercise: Show that the function of (4.2) is the only solution of (4.1) in the class
C2(R) ∩ L1(R) . (Hint: Consider any solution v in this class; then v′′ = v − f ∈
L1(R) , which implies that (̂v′′)(ξ) is well-defined. Argue that lim|x|→∞ v′(x) = 0 and

lim|x|→∞
(
v(x) eiξx

)
= 0 , to justify the computation (̂v′′)(ξ) = −ξ2 v̂(ξ) . Then use the

Fourier inversion results, to conclude v ≡ u .)
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A: THE WAVE EQUATION ON THE REAL LINE

Our next illustration of Fourier-analytic techniques concerns the Partial Differential
Equation of Wave-Motion

∂2u

∂t2
= c2 · ∂2u

∂x2
; t > 0 , x ∈ R , (4.3)

which we shall seek to solve for a C2,2−function u : [0,∞) ×R → R of two arguments
(t, x) (“time” and “displacement”, respectively) subject to the initial conditions

lim
t↓0, y→x

u(t, y) = f(x) ; x ∈ R (initial displacements)

lim
t↓0, y→x

∂u

∂t
(t, y) = g(x) ; x ∈ R (initial velocities). (4.4)

Here c > 0 is a given real constant, and f , g are given functions in the spaces C2
↓(R) and

C1
↓(R), respectively, of Definition 1.6.1. When these functions have compact support, we

think of (4.3), (4.4) as describing the wave-motion due to a localized initial disturbance in
displacements and velocity.

The equation (4.4) can be derived from Newton’s Second Law of Motion, as follows:
consider a small piece AB of the string, stretching at time t as {u(t, x), a ≤ x ≤ b}
between the points x` = a and xr = b. The force acting at any position x ∈ (a, b) comes
from the internal tension of the string, which is nearly constant for small oscillations, and
acts along the string; thus, its vertical component is proportional to the sine

sin(ϑ) =
D√

1 + D2
, D :=

∂u

∂x
(t, x)

of the angle ϑ of inclination. Thus, if D = tan(ϑ) is small, the net force acting on the
piece AB of this string is approximately

f ' const ·
[
∂u

∂x
(t, b)− ∂u

∂x
(t, a)

]
.

By Newton’s Second Law of Motion,

f = mass · acceleration ' const. (b− a) · ∂2u

∂t2
(t, x) .

Equating the two expressions we see that for b− a small:

∂2u

∂t2
(t, x) ' const · 1

b− a

[
∂u

∂x
(t, b)− ∂u

∂x
(t, a)

]
' const · ∂2u

∂x2
(t, x) ,
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as postulated by the equation (4.4).

To solve the initial-value problem of (4.3)-(4.4) for the Wave Equation, we look again
at the Fourier transform

û(t, ξ) :=
∫ ∞

−∞
eiξxu(t, x) dx

of u(t, ·) for each fixed t ≥ 0 . Proceeding heuristically, by differentiation and integration-
by-parts, we obtain much as before

∂2û

∂t2
(t, ξ) =

∫ ∞

−∞
eiξx ∂2u

∂t2
(t, x) dx = c2

∫ ∞

−∞
eiξx ∂2u

∂x2
(t, x) dx = · · · = −(cξ)2 û(t, ξ) .

The advantage here, is that the resulting equation

∂2

∂t2
û(t, ξ) = −(cξ)2 û(t, ξ)

is, for fixed ξ ∈ R , a second-order ordinary differential equation in the temporal variable,
which can be solved very easily subject to the initial conditions

û(0, ξ) = f̂(ξ) ,
∂ û

∂t
(0, ξ) = ĝ(ξ)

for each fixed ξ ∈ R ; the solution is

û(t, ξ) = cos(ctξ) · f̂(ξ) +
sin(ctξ)

ctξ
· ĝ(ξ) t ; t > 0 . (4.5)

But now let us change our point of view, and look at this expression as a fucntion of
ξ ∈ R for each for fixed t > 0 ; we know from Examples 1.1 and 1.2 that the functions
ξ 7→ cos(ctξ) , ξ 7→ (

sin(ctξ)/ctξ
)

are the Fourier transforms of the symmetric Bernoulli
distribution (δct + δ−ct)/2 and of the uniform distribution with density (1/2ct)χ[−ct,ct] ,
respectively. Thus, in order to invert (4.5), we can take the convolution of the first of these
distributions with f(·) and of the second with t g(·) , and arrive at the famous D’Alembert
formula

u(t, x) =
f(x− ct) + f(x + ct)

2
+

1
2c

∫ x+ct

x−ct

g(y) dy ; t ∈ [0,∞), x ∈ R .

︸ ︷︷ ︸
(4.6)

It is not hard to verify that this function solves the initial-value problem (4.3)-(4.4)
for the Wave Equation. The careful reader may have noticed already, in the expression
of (4.6), the familiar wedge-like shape of wavefront propagation that can be observed, for
instance, in the wake of a boat travelling at constant speed in a calm lake: the initial
disturbance propagates at the constant speed c > 0 .
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B: THE HEAT EQUATION ON THE REAL LINE

We illustrate further the applicability of Fourier transforms, by solving the Cauchy (initial-

value) problem
∂u

∂t
=

1
2

∂2u

∂x2
; t > 0 , x ∈ R (4.7)

lim
t↓0

u(t, x) = f(x) ; x ∈ R , (4.8)

for the Partial Differential Equation of Heat Transfer on an infinite linear rod.
Here f : R → R is a given function, whose regularity properties will be specified below;
it plays the rôle of “initial temperature profile”, in the sense that u(0, x) ≡ f(x) is the
temperature at t = 0 at the position x ∈ R on the infinite rod. The problem is to determine
the tempereture-profile u(t, x), x ∈ R along the rod, at all subsequent times t > 0 .

The equation (4.7) can be derived from Newton’s Law of cooling, as follows: according
to this law, the heat-flux across a certain point x (from left to right) is proportional to
the temperature gradient at x, so the total such flux during a short time-interval (t, t + δ)
is approximately −κδ (∂u/∂x). Here the constant κ > 0 is the heat-conductivity of the
material, and the sign reflects the fact that heat flows form hot places to cool. Therefore,
the net amount of heat flowing out of a small neighborhood I = (x− h, x + h) during the
short time-interval (t, t + δ) is approximately

−κδρ

[
∂u

∂x
(t, x + h)− ∂u

∂x
(t, x− h)

]
,

where ρ > 0 is the density of the material. However, this same net-amount can also be
computed approximately as

− 2h c [u(t + δ, x)− u(t, x)] ,

where the “specific-heat” c > 0 of the material multiplies the average decrease in tempera-
ture over the neighborhood I during the short time-interval (t, t + δ). Equating these two
expressions, dividing by 2hδ, and then letting both h and δ decrease to zero, we arrive at
the equation ∂u

∂t = (σ/2) ∂2u
∂x2 with σ = κρ/c ; the equation (4.7) corresponds then to the

normalization σ = 1 .

The problem of solving (4.7), (4.8) can be reduced formally to another, much simpler
initial-value problem, for the Fourier transform

û(t, ξ) :=
∫ ∞

−∞
eiξxu(t, x) dx
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of the function x 7→ u(t, x), if it is assumed that the initial datum f(·) belongs to the
space L1(R) ∩ L2(R) . For each fixed ξ ∈ R , formal differentiation under the integral
sign, followed by integrations by parts, yields then

∂û

∂t
(t, ξ) =

∫ ∞

−∞
eiξx ∂u

∂t
(t, x) dx =

∫ ∞

−∞
eiξx 1

2
∂2u

∂x2
(t, x) dx = · · · = −1

2
ξ2 û(t, ξ)

a first-order ordinary differential equation for the function t 7→ û(t, ξ) , subject to the
initial condition û(0, ξ) = f̂(ξ) :=

∫∞
−∞ eiξxf(x)dx . The solution is seen to be

û(t, ξ) = f̂(ξ) · e−tξ2/2 ; t ≥ 0 . (4.9)

• Now we change our point of view, and look at the expression of (4.9) as a function
of ξ ∈ R , for each fixed t ≥ 0 . From the Plancherel identity (1.17), we deduce that the
resulting function û(t, ·) is in L2(R) for each t ≥ 0 , as well as in L1(R) for each t > 0
by the Cauchy-Schwartz inequality. The Fourier inversion formula (1.10) allows us then
to define u(t, ·) for each t > 0 as a uniformly continuous function in the space L∞(R) ,
namely

u(t, x) =
1
2π

∫ ∞

−∞
e−ixξ−tξ2/2 f̂(ξ) dξ , ∀ x ∈ R . (4.10)

We can then differentiate under the integral sign repeatedly, and deduce that u(t, ·) belongs
to the space C∞(R) and satisfies the heat equation (4.7), for t > 0 . Furthermore, let us
notice that the right-hand side of (4.10) is well-defined also for t = 0 , and coincides then
with the L2(R)−function

x 7→ f(x) =
1
2π

∫ ∞

−∞
e−iξx f̂(ξ) dξ

of (1.10). The Plancherel identity (1.17) of Exercise 1.11 shows u(t, ·) ∈ L2(R) for all
t ≥ 0 , and we deduce that the initial condition is also satisfied, but now in the weak sense

∣∣∣∣u(t, ·)− f(·)
∣∣∣∣

2
−→ 0 , as t ↓ 0 . (4.8)′

Indeed, by (1.17) and the Lebesgue Dominated Convergence Theorem,

2π
(∣∣∣∣u(t, ·)− f(·)

∣∣∣∣
2

)2

=
(∣∣∣∣û(t, ·)− f̂(·)

∣∣∣∣
2

)2

=
∫ ∞

−∞

∣∣e−tξ2/2 − 1
∣∣2 ∣∣f̂(ξ)

∣∣2 dξ −→ 0

as t ↓ 0 , since f̂(·) ∈ L2(R) (again by Exercise 1.11).

• For an initial datum f(·) in the Schwartz space C∞↓ (R) of rapidly decreasing, infinitely
differentiable functions (Definition 1.6.1), the function x 7→ u(t, x) is smooth for t ≥ 0, and
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the initial condition reduces to its simple form (4.8). Indeed, f̂(·) is then also in C∞↓ (R) ;
we can differentiate an arbitrary number of times and then let t ↓ 0 in (4.10), since all the
resulting integrals are then absolutely convergent.

• To deal with larger classes of initial data f(·), it is more convenient to recast the formula
(4.10) formally, with the help of Fubini-Tonelli, in yet another form

u(t, x) =
1
2π

∫ ∞

−∞
e−ixξ e−tξ2/2

(∫ ∞

−∞
eiyξf(y) dy

)
dξ

=
∫ ∞

−∞
f(y)

[
1
2π

∫ ∞

−∞
e i(y−x)ξ− tξ2/2 dξ

]
dy .

The inner integral amounts to an easy Gaussian calculation, to wit,

u(t, x) =
∫ ∞

−∞
pt(x, y)f(y) dy , t > 0 , x ∈ R ,

︸ ︷︷ ︸
(4.11)

where
pt(x, y) :=

1√
2πt

e−(x−y)2/2t , t > 0 , x ∈ R , y ∈ R (4.12)

is the fundamental Gaussian (“heat”) kernel of (2.9.3).
Alternatively, we may observe that the right-hand side of (4.9) is the product of the

Fourier transform of f(·) with that of the Gaussian probability density function y 7→
(2πt)−1/2 e−y2/2t (Exercise 1.1), thus identifying u(t, · ) as the convolution of these two
functions in the manner of (4.11) and (4.12).

• We can now use (4.11) to construct solutions of the initial-value problem of (4.7)-(4.8)
for the heat equation, corresponding to more general classes of initial data. For example,
assume that the initial temperature profile f(·) is a uniformly continuous function on R.
Then (4.11) defines a smooth function u(t, ·) for t > 0; the mapping (t, x) 7→ u(t, x)
is actually continuous on [0,∞) × R (that is, all the way down to t = 0), while its
restriction to t = 0 is f(·). For this, we note that the heat-kernel pt(x, y) satisfies the
following conditions, for each x ∈ R :

(i)
∫∞
−∞ pt(x, y)dy = 1 , for each t > 0 .

(ii) pt(x, y) > 0 , for all t > 0 , y ∈ R .
(iii) For any δ > 0 , we have

∫
{y∈R : |x−y|>δ} pt(x, y) dy −→ 0 , as t ↓ 0.

The first item follows from the fact that y 7→ pt(x, y) is a probability density function (of
the normal distribution with expectation x and variance t). The second is also obvious. As
for the third item, we note that the change of variables to z = (x−y)t−1/2 transforms the
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integral given there into (2π)−1/2
∫
{z∈R : |z|>δt−1/2} e−|z|

2/2dz = 2
[
1− Φ(δ/

√
t)

] → 0 as
t ↓ 0 , in the notation of (2.5.1). Let δ be now any positive number, and write

u(t, x)− f(x) =
∫ ∞

−∞
[f(y)− f(x)] pt(x, y) dy

=

(∫

{y : |x−y|≤δ}
+

∫

{y : |x−y|>δ}

)
[f(y)− f(x)] pt(x, y) dy ,

in view of (i). Since f(·) is uniformly continuous, we can make the first integral on the
right-hand side of this last expression smaller than any given number ε > 0 , by choosing
δ > 0 small enough. In view of (iii), the second integral can also be made smaller than ε ,
by choosing t > 0 small enough. This establishes the continuity of u(·, ·) on [0,∞)×R ,
namely (4.8); or even

lim
t↓0, ζ→x

u(t, ζ) = f(x) , ∀x ∈ R . (4.13)

4.3 Exercise : General Solution of the Cauchy Problem for the Heat-Equation.
Suppose that the initial temperature-profile function f : R → R is measurable, and
satisfies ∫ ∞

−∞
e−x2/2T |f(x)| dx < ∞ (4.14)

for some T ∈ (0,∞) . Then the function u of (4.11) is well-defined and of class C∞ on
(0, T )×R (on (0,∞)×R , if (4.14) holds for all T > 0 ), and satisfies on this strip the
heat equation (4.7). If, furthermore, the function f(·) is continuous, then u satisfies both
the heat equation (4.7) and the initial condition (4.13).

4.4 Exercise : Tychonoff’s Uniqueness Theorem. Suppose that the functions
uj(·, ·), j = 1, 2 are of class C1,2 on the strip (0, T ] ×R and satisfy the heat-equation
(4.7) there, as well as the conditions limt↓0, y→x u1(t, y) = limt↓0, y→x u2(t, y) and

sup
0<t≤T

∣∣uj(t, x)
∣∣ ≤ Keax2

, j = 1, 2

for all x ∈ R , where K > 0 and a > 0 are real constants. Then u1(·, ·) ≡ u1(·, ·) on
(0, T ]×R .

4.5 Exercise : Non-negative Solutions of the Heat Equation (Widder, 1944).
(i) Suppose that the nonnegative function u is defined and of class C1,2 on (0, T ) ×R
for some T ∈ (0,∞] , and satisfies on this strip the heat equation (4.7). Then there exists
a measure µ on B(R) , such that

u(t, x) =
∫ ∞

−∞
pt(x, y) dµ(y) , 0 < t < T , x ∈ R (4.15)
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in the notation of (4.12). Conversely, every function u of the form (4.15) is a nonnegative
solution of the heat equation.

(ii) Similarly, let v be a nonnegative function defined and of class C1,2 on (0,∞)×R ,
which satisfies on this strip the backward heat equation

∂v

∂t
+

1
2

∂2v

∂x2
= 0 . (4.7)′

Then there exists a a measure µ on B(R) , so that

u(t, x) =
∫ ∞

−∞
exp

(
xy − y2

2
t

)
dµ(y) , 0 < t < ∞ , x ∈ R ; (4.15)′

and conversely, every function v of the form (4.15)′ is a nonnegative solution of the
backward heat equation.

4.1 Remark: Consider the expression of (4.15) for the measure µ = δa ; this amounts to
placing a unit of heat at the site a ∈ R , while leaving the rest of the rod at temperature
f(x) = 0 , ∀ x 6= a . Then (4.15)′ becomes

v(t, x) =
1√
2πt

e−(x−a)2/2t ,

a quantity which is strictly positive for any t > 0 and x ∈ R . In other words, heat is

transferred across an ideal conductor at infinite speed. This is in sharp contrast with the
qualitative properties of the wave equation, studied in paragraph 3.4.1; as we saw there,
an initial wave-disturbance propagates at a constant, finite speed.

4.6 Exercise : Neumann Boundary Data, Insulated Heat Flow on a Semi-
Infinite Rod. Suppose that the continuous function f : R → R is evenly symmetric on
R and satisfies (4.14) for all T ∈ (0,∞) ; then the function u(t, ·) of (4.11), solution of the
initial-value problem of (4.7)-(4.8) for the Heat Equation, inherits this even symmetry, and
actually solves the Initial-Boundary Value Problem with Neumann Boundary Condition

∂u

∂t
=

1
2

∂2u

∂x2
; t > 0 , x > 0 (Heat Equation)

lim
t↓0, y→x

u(t, y) = f(x) ; x > 0 (Initial Condition)

∂u

∂x
(t, 0) = 0 ; t > 0 (Neumann Boundary Condition).

In other words, in order to determine the heat-flow on a semi-infinite rod, whose end-
point is kept insulated at all times

(
∂u
∂x (t, 0) = 0 at x = 0 ,∀ t > 0

)
, it suffices to compute
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the heat-flow on an infinite rod, with the initial temperature-profile extended by even
symmetry on (0,−∞). This, and the resulting formula

u(t, x) =
∫ ∞

0

[ pt(x, y) + pt(x,−y)] f(y) dy ; t > 0 , x ≥ 0
︸ ︷︷ ︸

(4.16)

for the above initial-boundary value problem, constitute Lord Kelvin’s Method of Images

for this problem.

4.7 Exercise : Dirichlet Boundary Data, Heat Flow on a Semi-Infinite Rod
with Endpoint “frozen” at all Times. Suppose now that the continuous function
f : R → R is oddly symmetric on R and satisfies (4.14) for all T ∈ (0,∞) ; then the
function u(t, ·) of (4.11) inherits this odd symmetry, and solves the Initial-Boundary Value

Problem with Dirichlet Boundary Condition

∂u

∂t
=

1
2

∂2u

∂x2
; t > 0 , x > 0 (Heat Equation)

lim
t↓0, y→x

u(t, y) = f(x) ; x > 0 (Initial Condition)

u(t, 0) = 0 ; t > 0 (Dirichlet Boundary Condition).

In other words, in order to determine the heat-flow on a semi-infinite rod, whose
end-point is kept at a constant temperature of 0 degrees Celsius (freezing) at all times
(u(t, 0) = 0 at x = 0 , ∀ t > 0), it suffices to compute the heat-flow on an infinite rod, with
the initial temperature-profile extended by odd symmetry on (0,−∞). This, and the re-
sulting formula

u(t, x) =
∫ ∞

0

[ pt(x, y)− pt(x,−y)] f(y) dy ; t > 0 , x ≥ 0
︸ ︷︷ ︸

(4.17)

for the above initial-boundary value problem, constitute Lord Kelvin’s Method of Images

in this case.

4.8 Exercise : Dirichlet Boundary Data; Heat Flow on an initially frozen Semi-
Infinite Rod, with gradual warming at the Endpoint. Consider the Initial-
Boundary Value Problem

∂u

∂t
=

1
2

∂2u

∂x2
; t > 0 , x > 0 (Heat Equation)

lim
t↓0, y→x

u(t, y) = 0 ; x > 0 (Initial Condition)

u(t, 0) = g(t) ; t > 0 (Dirichlet Boundary Condition).

for some bounded, continuous function g : [0,∞) → [0,∞) .
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This corresponds to setting the initial temperature at zero throughout a semi-infinite
rod, whose end-point x = 0 is now assigned a time-varying temperature profile. Show
that this problem is solved by the Abel Tranform

u(t, x) =
∫ t

0

x

s
ps(x, 0) g(t− s) ds ; t > 0 , x > 0 .

︸ ︷︷ ︸
(4.18)

4.9 Exercise : Schrödinger Equation. Show that the function

V (t, x) = − log
(∫ ∞

−∞

1√
2πt

exp
{
−h(y)− (x− y)2

2t

}
dy

)
; t > 0, x ∈ R

solves the initial-boundary value problem for the Schrödinger Equation

∂V

∂t
=

1
2

[
∂2V

∂x2
−

(
∂V

∂x

)2
]

; t > 0 , x ∈ R

lim
t↓0, y→x

V (t, y) = h(x) ; x ∈ R ,

where h : R → R is a given function with
∫∞
−∞ e−(h(x)+ax2) dx < ∞ , ∀ a > 0 .

4.10 Exercise : Burgers Equation. For a given continuous function ψ : R → R and
with Ψ(t, x, y) := (x− y)2/2t +

∫ y

0
ψ(ξ) dξ , the function

v(t, x) =

∫∞
−∞

(
x−y

t

)
e−Ψ(t,x,y) dy∫∞

−∞ e−Ψ(t,x,y) dy

solves the initial-boundary value problem for the Burgers Equation

∂v

∂t
=

1
2

∂2v

∂x2
− v

(
∂v

∂x

)
; t > 0 , x ∈ R

lim
t↓0, y→x

v(t, y) = ψ(x) ; x ∈ R .
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4.11 Exercise: For a given bounded continuous function σ : [0,∞) → (0,∞) with∫∞
0

σ(t)dt = ∞ , consider the non-linear partial differential equation

(
∂2V

∂x2

) (
∂V

∂t

)
=

σ(t)
2

(
∂V

∂x

)2

, t > 0 , x > 0 .

Consider solutions V (t, x) : (0,∞)× (0,∞) → R of this equation which are of class C1,3

and such that the function V (t, ·) is strictly increasing, strictly concave with

∂V

∂x
(t, 0+) = ∞ ,

∂V

∂x
(t,∞) = 0 .

(i) Show that any such solution is of the form V (t, x) = infy>0

[
Q(t, y) + xy

]
, where

Q(t, y) =
∫

(0,∞)

1
1− s

(
1− y1−s eA(t) s(1−s)

)
ν(ds) + C ;

here C is a constant, A(t) = (1/2)
∫ t

0
σ(u) du , and ν a finite measure on B(

(0,∞)
)

with
Laplace transform which is finite everywhere.

(ii) Let u : (0,∞) → R be a given strictly increasing, strictly concave function of class C1

and with u′(0+) = ∞ , u′(∞) = 0 . There exists a function V (t, x) : (0,∞)×(0,∞) → R
as above and with V (0+, x) = u(x) for all x ∈ (0,∞) , if and only if

(
u′

)−1(y) =
∫

(0,∞)

y−s ν(ds) , 0 < y < ∞

for some finite measure ν on B(
(0,∞)

)
with Laplace transform which is finite everywhere.

Determine this measure explicitly, in the case u(x) = xγ/γ , x > 0 for some γ ∈ (0, 1) .
(
Hint: Start with a solution V of this form, and look at its convex dual

Q(t, y) := sup
x>0

[
V (t, x)− xy

]
, y > 0 ;

write down the partial differential equation satisfied by the maximizer

I(t, y) = −∂Q

∂y
(t, y) > 0 defined implicitly via

∂V

∂x

(
t, I(t, y)

)
= y ,

then recall the representation (4.15)′ of positive solutions to the backwards heat equation.
Now retrace the steps.

)
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C. THE HEAT EQUATION AND BROWNIAN MOTION

The coincidence of the transition kernel (2.9.3) for the standard Brownian Motion and the
fundamental solution (4.12) of the Heat Equation, suggests a deep connection that exists
between the probabilistic and the analytical object. We shall point out in this subsection
just a few instances of this connection; for a more detailed treatment we send the reader
to Chapter 4 in Karatzas & Shreve (1991).

Let us recall the expressions (2.9.2), (2.9.3) for the transition probabilities of standard
Brownian Motion. They show that we may cast the expression (4.11) for the solution of
the Cauchy problem of (4.7), (4.8) for the Heat Equation in the suggestive form

u(t, x) = E[f(x + Wt)] =
∫ ∞

−∞

e−ξ2/2t

√
2πt

f(x + ξ) dξ

=
∫ ∞

−∞
pt(x− y) f(y) dy , t > 0, x ∈ R .

(4.19)

In other words: we can compute the temperature at time t at the site x along an infinite
rod, by starting a Brownian motion at that site, letting it run backwards it time for t time-
units, and then “averaging out” the initial temperature profile u(t, x) = E[f(x+Wt)] over
all its possible terminal positions.

• Similarly, the expression

u(t, x) = E[f(|x + Wt|)] =
∫ ∞

−∞

e−ξ2/2t

√
2πt

f(|x + ξ|) dξ

=
∫ ∞

−∞
pt(x− y) f(|y|) dy =

∫ ∞

0

[
pt(x− y) + pt(x + y)

]
f(y) dy , t > 0, x > 0

(4.20)
provides the solution to the Initial/BoundaryValue Problem of Exercise 4.6 with
Neumann boundary data ∂u

∂x (t, 0) = 0 . In words: to compute the temperature at time
t and at site x > 0 along a semi-infinite rod, start a Brownian motion at that site; let it
run backwards it time for t time-units while at the same time reflecting it whenever it hits
the origin, and then “average out” the initial temperature profile u(t, x) = E[f(|x+Wt|)]
as before.

• Now let us look at the Initial/Boundary Value Problem with Dirichlet boundary
data

∂u

∂t
=

1
2

∂2u

∂x2
; t > 0 , x > 0

lim
t↓0

y→x

u(t, y) = f(x) ; x > 0

u(t, 0) = g(t) ; t > 0

12



for given bounded, continuous functions f : [0,∞) → R and g : [0,∞) → R . From
Exercise 2.9.6 and Proposition 2.9.8 we see that

Ms := u
(
t− (s ∧ T̃x), x + W

s∧T̃x

)
, 0 ≤ s ≤ t− ε

is a Brownian martingale, where 0 < ε < t/2 and

T̃x := inf{ s ≥ 0 |x + Ws = 0 } (4.21)

is the first time the Brownian Motion process W hits the site −x . (We employ the usual
convention inf ∅ = +∞ .) But the defining property (2.9.19) of a Brownian martingale
gives E(Mt−ε) = M0 , or equivalently

u(t, x) = E
[
u

(
t− (t− ε) ∧ T̃x , x + W

(t−ε)∧T̃x

)]

= E
[
u

(
t− T̃x, x + W

T̃x

)
· χ{T̃x<t−ε} + u(ε, x + Wt−ε) · χ{T̃x≥t−ε}

]
.

Then, upon letting ε ↓ 0, our initial and boundary conditions lim t↓0
y→x

u(t, y) = f(x) and
u(s, 0) = g(s) lead to the following representation

u(t, x) = E
[
g(t− T̃x) · χ{T̃x<t} + f(x + Wt) · χ{T̃x≥t}

]
(4.22)

of the solution to the Initial/Boundary Value Problem with Dirichlet boundary data, in
terms of standard Brownian Motion.

To wit: suppose we have a semi-infinite rod, along which we specify an initial (spatial)
temperature profile f(·); we also specify at the origin a (temporal) temperature profile g(·).
In order to compute the temperature u(t, x) at time t > 0 and position x > 0 we run from
(t, x) , and backwards in time, a Brownian Motion that gets absorbed at the origin when
it hits it. We then average over the spatial temperature profile at the terminal position for
those paths that do not hit the origin by time t, and over the temporal profile for those
paths that do.

For instance, take f ≡ 0 and g ≡ 1 . Then the expression of (4.22) gives the rep-
resentation u(t, x) = E

[
χ{T̃x<t}

]
= P[ T̃x < t ] . But we already know from Exercise 4.8

that

u(t, x) =
∫ t

0

x

s
ps(0, x) ds =

∫ t

0

x√
2πs3

e−x2/2s ds .

Comparing the two expressions we obtain another derivation for the distribution

u(t, x) = P[ T̃x < t ] =
∫ t

0

x√
2πs3

e−x2/2s ds =

√
2
π
·
∫ ∞

x/
√

t

e−ξ2/2 dξ

= 2
[
1− Φ

(
x√
t

)]
, t > 0 , x > 0

(4.23)
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of the first hitting time T̃x of (4.21); recall the ‘Reflection Principle’ of Proposition 2.9.13
and the derivation from it of the distribution (2.9.32). By symmetry, this is also the
distribution of the first hitting time Tx := inf{ s ≥ 0 |Ws = x } . Letting t →∞ in (4.23)
we deduce

P[ T̃x < ∞ ] = P[Tx < ∞ ] = 2 · lim
t→∞

[
1− Φ

(
x√
t

)]
= 1 for every x > 0 , (4.24)

as well as

E
(
T̃x

)
= E

(
Tx

)
=

∫ ∞

0

P
(
T̃x > t

)
dt =

∫ ∞

0

[
2Φ

(
x√
t

)
− 1

]
dt = ∞ , for x > 0 .

(4.25)
The typical Brownian path will visit eventually any given site on the real line; but may

take an awfully long time to get there. This is the null recurrence property of the one-
dimensional Brownian Motion process, that we encountered already in Exercise 2.9.15.

4.12 Exercise: With the notation of (4.12), (4.21) show

P[ T̃x ≥ t ] =
∫ ∞

0

[
pt(x− y)− pt(x + y)

]
dy for every t > 0, x > 0 .

(Hint: Take g ≡ 0, f ≡ 1 in (4.22) and recall Exercise 4.7.)

• How about the Ordinary Differential Equation u′′ − u + f = 0 of (4.1)? Can we view
its solution (4.2) also through the lens of Brownian Motion?

It turns out that here, too, there is such a connection, which passes through the
so-called resolvent

(Gαg)(x) := E
∫ ∞

0

e−αtg(x + Wt) dt =
1√
2α

∫ ∞

−∞
e−|x−y|√2α g(y) dy , x ∈ R

defined for α > 0 and any given Borel-measurable function g : R → R that satisfies
∫ ∞

−∞
e−|y|

√
2α | g(x + y)| dy < ∞ , ∀ x ∈ R . (4.26)

Of critical importance here, is the Laplace transform computation

∫ ∞

0

e−αt

(
e− ξ2/2t

√
2πt

)
dt =

e−|ξ|
√

2α

√
2α

, ξ ∈ R .

It is rather easy to check that the function Gαg satisfies the resolvent Ordinary

Differential Equation

(Gαg)′′(x)− 2α · (Gαg)(x) + 2g(x) = 0 x ∈ R , (4.27)
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provided that g is continuous and satisfies (4.26). Then, using the Markov property of
Brownian motion, it can be shown that the function

u(x) := E
∫ ∞

0

e
−αt−

∫ t

0
k(x+Ws)ds

f(x + Wt) dt , x ∈ R (4.28)

is the unique solution in C2(R) ∩ L1(R) of the equation

1
2

u′′(x)− (
α + k(x)

) · u(x) + f(x) = 0 x ∈ R , (4.29)

for given α > 0 , continuous k : R → [0,∞) , and f ∈ C(R) ∩ L1(R) .

4.13 Exercise: Verify the claims of (4.27)-(4.29).
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