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1 Extremum Estimators

Let θ0 be a vector of k × 1 unknown parameters. Extremum estimators:
estimators obtained by maximizing or minimizing some objective functions.
Why does this make sense? You want to find the best parameter which nat-
urally involves maximization (of gain) or minimization (of loss). Examples:

1. Maximum Likelihood: Maximizing the log-likelihood function;

2. Minimum Distance Estimators: LS, GMM, etc.

Suppose the objective function to be maximized is QT (θ), then the ex-
tremum estimator is defined by

θ̂T = arg max
θ∈Θ

QT (θ)

For well behaved objective functions, it is equivalent to say that the ex-
tremum estimator is defined by

∂

∂θ
QT (θ)

∣∣∣∣
θ=θ̂T

= 0

Example: OLS. What is the objective function? What is the first order
condition (FOC)?

We will prove consistency/asymptotic distribution at the general level
for all extremum estimators. Then, we will specialize the argument to two
(very important) special cases of MLE (maximum likelihood estimation) and
GMM (generalized method of moments).

1.1 Consistency of θ̂

What is the issue here: you want to maximize Q0 (θ) but can maximize only
its sample counterpart QT (θ). Under what conditions is the maximizer
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of the sample counterpart “close” to the maximizer of the true objective
function? For concreteness, think the OLS example.

Definition 1 (Uniform Convergence in Probability) QT (θ) converges uni-
formly in probability to Q0 (θ) if

sup
θ∈Θ
|QT (θ)−Q0 (θ)| p→ 0

Theorem 2 If there is a function Q0 (θ) such that (i) Q0 (θ) is uniquely
maximized at θ0 (ii) Θ is compact (iii) Q0 (θ) is continuous (iv) QT (θ)
converges uniformly in probability to Q0 (θ), then θ̂T

p→ θ0.

Proof: For any ε > 0, we have with probability approaching 1 that (a)
QT

(
θ̂T

)
> QT (θ0)−ε/3 because θ̂T is the maximizer of QT ; (b) Q0

(
θ̂T

)
>

QT

(
θ̂T

)
−ε/3 by the uniform convergence of QT (θ) to Q0 (θ) (c) QT (θ0) >

Q0 (θ0)−ε/3 again by the uniform convergence. Therefore, with probability
approaching 1,

Q0

(
θ̂T

)
> QT

(
θ̂T

)
− ε/3

> QT (θ0)− 2ε/3

> Q0 (θ0)− ε

Let N be an open neighborhood of θ0. θ0 is the unique maximizer of Q0 (θ)
implies supθ∈Θ∩NC Q0 (θ) = Q0 (θ∗) < Q0 (θ0) for some θ∗ ∈ Θ∩NC . Choose
ε = Q0 (θ0)−supθ∈Θ∩NC Q0 (θ), it follows that with probability approaching
1, Q0

(
θ̂T

)
> supθ∈Θ∩NC Q0 (θ) and therefore θ̂T ∈ N .

Counterexample:

1. if Θ is not compact, e.g. Θ = [0, 1) ∪ {2}, and assuming the objective
function to be maximized is f (x) = x if x ∈ [0, 1), f (x) = 1 if x = 2
(by the way, is this objective function continuous?);

2. If Q0 (θ) is not continuous, f (x) = Cos (x) if x ∈ [0, 2π), f (x) = 0 if
x = 2π. Θ = [0, 2π]
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3. What about non-uniqueness if the maximum? This relates also to the
issue of identification. What is non-identification? E.g., if you are to
estimate β = u − v, can you separately identify u and v (even with
infinite number of observations)?

The following lemma helps to easily verify the uniform convergence con-
dition (iv) in practice.

Lemma 3 (Uniform Law of Large Numbers) If the data are i.i.d., Θ is
compact, a (xi, θ) is continuous at each θ ∈ Θ with probability one, and
there is d (x) such that ‖a (x, θ)‖ ≤ d (x) for all θ ∈ Θ and E [d (x)] < ∞.
then E [a (x, θ)] is continuous and

sup
θ∈Θ

∥∥∥∥∥n−1
n∑
i=1

a (xi, θ)− E [a (x, θ)]

∥∥∥∥∥ p→ 0

Verify OLS consistency using both classical and this method.

1.2 Asymptotic Normality of θ̂

Taylor expand ∂
∂θQT (θ)

∣∣
θ=θ̂T

= 0 around θ0

0 = Q′T

(
θ̂T

)
= Q′T (θ0) +Q

′′
T (θ∗T )

(
θ̂T − θ0

)
for some θ∗T in between θ0 and θ̂T (recall the implicit assumptions involved
here in this expansion).

√
T
(
θ̂T − θ0

)
= −

[
Q

′′
T (θ∗T )

]−1√
TQ′T (θ0)

By CLT √
TQ′T (θ0) d→ N (0, V (θ0))

θ̂T
p→ θ0 and θ∗T is in between θ0 and θ̂T imply θ∗T

p→ θ0. Therefore,

−
[
Q

′′
T (θ∗T )

]−1 p→ −
[
Q

′′
T (θ0)

]−1
≡ −S (θ0)−1 (1)
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(this step is almost correct). Asymptotic normality follows from Slutsky

√
T
(
θ̂T − θ0

)
d→ N

(
0, S (θ0)−1 V (θ0)

[
S (θ0)T

]−1
)

Theorem 4 If the estimator satisfies θ̂
p→ θ and (i) θ0 ∈ Interior (Θ) (ii)

QT (θ) is twice continuously differentiable in a neighborhood N of θ0 (iii)√
TQ′T (θ0) d→ N (0,Σ) (or equivalently replace this assumption with your

favorite central limit theorem) (iv) there is H (θ) continuous at θ0 such that
supθ∈N ‖Q′′T (θ)−H (θ)‖ p→ 0 (this makes the almost correct step correct);
(v) H = H (θ0) is nonsingular. Then

√
T
(
θ̂ − θ0

)
d→ N

(
0, H−1ΣH−1

)
Condition (iv) makes (1) valid. Condition (iv) can be verified simiar to

verifying uniform law of large numbers (Lemma 3).
Example: consistency and normality of OLS
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2 Maximum Likelihood Estimator

Let f (xi, θ) be the probability density of observation xi. The maximum
likelihood estimator (MLE) is defined as

θ̂T = max
θ∈Θ

T∑
i=1

log f (xi, θ)

I.e., you choose the parameter which is most likely to generate the ob-
servations. It is not obvious now why this is optimal. But we will show that
MLE has a number of optimality properties.

Let si (θ) = ∂
∂θ log f (xi, θ).

ST (θ) =
T∑
i=1

si (θ)

is called the Score. The MLE estimator sets the score to 0.

1 =
∫
f (x, θ) dx

Differentiate once,

0 =
∫
∂f (x, θ)
∂θ

dx

=
∫
∂ log f (x, θ)

∂θ
f (x, θ) dx

=
∫
S (θ) f (x, θ) dx

Differentiate again,

0 =
∫
S′ (θ) f (x, θ) dx+

∫
S (θ)

∂f (x, θ)
∂θ

dx

=
∫
S′ (θ) f (x, θ) dx+

∫
S (θ)

∂ log f (x, θ)
∂θ

f (x, θ) dx

=
∫
S′ (θ) f (x, θ) dx+

∫
S (θ)2 f (x, θ) dx
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Therefore,
I (θ) = −E

[
S′ (θ)

]
= E

[
S (θ)2

]
where I (θ) is the information matrix.

Ii (θ) = −E
[
s′i (θ)

]
= E

[
si (θ)2

]
denotes the information in the i-th observation.

I (θ) = E
[
S (θ)2

]
denotes the information in the sample, and

IT = T−1
∑

Ii (θ)

denotes the average information.
With independent sampling, the s′i are independent of each other and

I (θ) =
∑
Ii (θ). With i.i.d. sampling Ii (θ) = Ij (θ) = IT (θ) = T−1I (θ) ≡

I (θ).

2.1 Consistency of the MLE estimator

A feature of MLE estimator is that identification is sufficient to guarantee
the log-likelihood function has a unique maximum at the true parameter θ0.

Lemma 5 If θ0 is identified (θ 6= θ0 implies f (x, θ) 6= f (x, θ0) with positive
probability) and E [|log f (x, θ)|] < ∞ for all θ then Q0 (θ) = E [log f (x, θ)]
has a unique maximum at θ0.
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Proof: By the strict Jensen’s inequality

Q0 (θ0)−Q0 (θ) = E

[
− log

f (x, θ)
f (x, θ0)

]
> − logE

[
f (x, θ)
f (x, θ0)

]
= − log

∫
f (x, θ)
f (x, θ0)

f (x, θ0) dx

= 0

Theorem 6 Suppose the observations are i.i.d. with p.d.f. f (xi, θ0) and (i)
f (x, θ) 6= f (x, θ0) with positive probability if θ 6= θ0 (ii) θ0 ∈ Θ compact (iii)
logf (x, θ) is continuous at each θ with probability one (iv) E [supθ∈Θ |log f (x, θ)|] <
∞. Then θ̂MLE

p→ θ0.

Proof: The theorem is proved by verifying the conditions of theorem 2
using the uniform law of large numbers.

2.2 Asymptotic Normality of the MLE estimator

Theorem 7 Assume the conditions for theorem 6 are satisfied and (i) θ0 ∈
Interior (Θ) (ii) f (x, θ) is twice continuously differentiable with respect to θ
and f (x, θ) > 0 in a neighborhood N of θ0 (iii)

∫
supθ∈N

∥∥ ∂
∂θf (x, θ)

∥∥ dx <
∞ and

∫
supθ∈N

∥∥∥ ∂2

∂θ2
f (x, θ)

∥∥∥ dx <∞ (iv) Ii (θ) (the information matrix of

an individual observation) is not singular (v) E
[
supθ∈N

∥∥∥ ∂2

∂θ2
log f (x, θ)

∥∥∥] <
∞. Then √

T
(
θ̂MLE − θ0

)
d→ N

(
0, Ii (θ)−1

)
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